Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lineare Gleichungssysteme: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 116: | Zeile 116: | ||
{{Box | 1=Merksatz - Erkennen der Lösung linearer Gleichungssysteme | 2= | {{Box | 1=Merksatz - Erkennen der Lösung linearer Gleichungssysteme | 2= | ||
Hat ein lineares Gleichungssystem '''keine Lösung''', lässt sich dies durch einen Widerspruch erkennen. Entsteht bei der Umformung eines Gleichungssystems innerhalb einer Gleichung ein Widerspruch, so hat das Gleichungssystem keine Lösung. Manchmal lässt sich dies bereits for dem Umformen erkennen, wenn zum Beispiel alle bis auf eine Komponente zweier Gleichungen identisch sind. Besitzt ein lineares Gleichungssystem keine Lösung, so ist die Lösungsmenge leer. Man schreibt dann <math> L= \{ | Hat ein lineares Gleichungssystem '''keine Lösung''', lässt sich dies durch einen Widerspruch erkennen. Entsteht bei der Umformung eines Gleichungssystems innerhalb einer Gleichung ein Widerspruch, so hat das Gleichungssystem keine Lösung. Manchmal lässt sich dies bereits for dem Umformen erkennen, wenn zum Beispiel alle bis auf eine Komponente zweier Gleichungen identisch sind. Besitzt ein lineares Gleichungssystem keine Lösung, so ist die Lösungsmenge leer. Man schreibt dann <math> L= \{\} </math>. | ||
Hat ein lineares Gleichungssystem '''unendlich viele''' Lösungen, lässt sich dies häufig direkt dadurch erkennen, dass zwei oder mehrere Variablen äquivalent sind, also Vielfache voneinander sind. Manchmal benötigt es zunächst einige Umformungen, bis eine Äquivalenz zwischen den Gleichungen erkannt werden kann. Besitzt ein lineares Gleichungssystem unendlich viele Lösung, so kann man eine Variable frei wählen und setzt für diese einen Parameter. Weiter unten findest du einen Merksatz zu diesem Vorgehen. | Hat ein lineares Gleichungssystem '''unendlich viele''' Lösungen, lässt sich dies häufig direkt dadurch erkennen, dass zwei oder mehrere Variablen äquivalent sind, also Vielfache voneinander sind. Manchmal benötigt es zunächst einige Umformungen, bis eine Äquivalenz zwischen den Gleichungen erkannt werden kann. Besitzt ein lineares Gleichungssystem unendlich viele Lösung, so kann man eine Variable frei wählen und setzt für diese einen Parameter. Weiter unten findest du einen Merksatz zu diesem Vorgehen. | ||
Zeile 219: | Zeile 219: | ||
\end{alignat}\right\vert</math> | \end{alignat}\right\vert</math> | ||
Multiplikation der dritten Gleichung mit <math> 2 </math> und anschließende Subtraktion der zweiten Gleichung ergibt: | Hier kann man bereits sehen, dass sich die zweite und dritte Gleichung widersprechen: Beide Gleichungen sind bis auf eine Komponente äquivalent. Denn die linke Seite der zweiten Gleichung ist ein Vielfaches der linken Seite der dritten Gleichung, die rechte Seite jedoch nicht. Multiplikation der dritten Gleichung mit <math> 2 </math> und anschließende Subtraktion der zweiten Gleichung ergibt: | ||
<math>\left\vert\begin{alignat}{7} | <math>\left\vert\begin{alignat}{7} | ||
Zeile 265: | Zeile 265: | ||
\end{alignat}\right\vert</math> | \end{alignat}\right\vert</math> | ||
Addition der dritten und zweiten Gleichung ergibt: | Hier kann man direkt sehen, dass die zweite und dritte Gleichung äquivalent sind, woran man bereits erkennt, dass das Gleichungssystem unendlich viele Lösungen besitzt. Addition der dritten und zweiten Gleichung ergibt: | ||
<math>\left\vert\begin{alignat}{7} | <math>\left\vert\begin{alignat}{7} | ||
Zeile 273: | Zeile 273: | ||
\end{alignat}\right\vert</math> | \end{alignat}\right\vert</math> | ||
Nun wird ein Parameter gesetzt: Wähle <math> z = t </math>. Einsetzen in die zweite Gleichung ergibt: | Nun wird ein Parameter gesetzt: Wähle <math> z = t </math>. Einsetzen in die zweite Gleichung ergibt: | ||
<math>\begin{align} | <math>\begin{align} |
Version vom 26. Mai 2021, 11:54 Uhr
Wiederholung: Verschiedene Verfahren zum Lösen linearer Gleichungssysteme
Lineare Gleichungssysteme mit dem Gauß-Algorithmus lösen
Lösbarkeit linearer Gleichungssysteme
TODO:
- Fälle eine Lösung, keine Lösung, unendlich viele Lösungen
Erklärungen undBeispiele und- Übungsaufgaben
- z.B. Fall unendlich viele Lösungen oder/ und keine Lösung direkt am LGS erkennen
Erklärung und Beispiel zum Vorgehen, eine Variable frei zu wählen (unendlich viele Lösungen)
Unter- und überbestimmte Gleichungssysteme
Multiplikation der dritten Gleichung mit und anschließende Subtraktion der zweiten Gleichung ergibt:
Aus der dritten Gleichung folgt:
Einsetzen von in die zweite Gleichung ergibt:
Einsetzen von und in die erste Gleichung ergibt:
An dieser Stelle entsteht ein Widerspruch. Die letzte Gleichung besitzt keine Gültigkeit. Das Gleichungssystem besitzt daher keine Lösung.
Subtraktion der ersten von der zweiten Gleichung ergibt:
Einsetzen von in die erste Gleichung ergibt:
Für dieses Gleichungssystem kann keine eindeutige Lösung bestimmt werden. Für wurde eine eindeutige Lösung bestimmt, und können nur in Abhängigkeit der jeweils anderen Variable bestimmt werden. So wurde hier die Variable in Abhängigkeit von bestimmt. Für kann also eine beliebige reelle Zahl eingesetzt werden, daher wird für ein Parameter eingesetzt: Sei . berechnet sich dann durch den Parameter . Das Gleichungssystem hat also unendlich viele Lösungen. Genauso wäre es möglich, die Variable in Abhängigkeit von zu bestimmen, also für einen Parameter zu setzen.
Multiplikation der dritten Gleichung mit und anschließende Subtraktion der zweiten Gleichung ergibt:
Einsetzen von in die zweite Gleichung ergibt:
Einsetzen von und in die erste Gleichung ergibt:
Hier entsteht also ein Widerspruch. Das Einsetzen von und in die erste Gleichung liefert ein anderes Ergebnis als das, was auf der rechten Seite der Gleichung steht. Daher gilt dieses Gleichungssystem als nicht lösbar, es besitzt also keine Lösung.
Interpretation der Lösung eines Linearen Gleichungssystems