Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 275: | Zeile 275: | ||
Um nun zu untersuchen, ob die Geraden '''parallel''' oder '''identisch''' sind, setzen wir einen Punkt der einen Geraden in die Geradengleichung der anderen Geraden ein. Liegt der Punkt der einen Geraden auf der anderen Geraden, sind die Geraden '''identisch'''. Andernfalls sind die Geraden '''parallel''' zueinander. | Um nun zu untersuchen, ob die Geraden '''parallel''' oder '''identisch''' sind, setzen wir einen Punkt der einen Geraden in die Geradengleichung der anderen Geraden ein. Liegt der Punkt der einen Geraden auf der anderen Geraden, sind die Geraden '''identisch'''. Andernfalls sind die Geraden '''parallel''' zueinander. | ||
[[Datei:Zwei identische Geraden.png|mini|Zwei identische Geraden]] | |||
[[Datei: | [[Datei:Zwei parallele Geraden.png|mini|Zwei parallele Geraden]] | ||
Sind die Richtungsvektoren nicht kollinear, so können die Geraden sich lediglich '''schneiden''' oder '''windschief''' zueinander verlaufen. Unter sich schneidene Geraden verstehen wir Geraden, die sich in einem Punkt schneiden. Windschiefe Geraden hingegen sind Geraden, die sich wie die parallelen Geraden zwar nicht schneiden, ihre Richtungsvektoren sind jedoch nicht kollinear. | Sind die Richtungsvektoren nicht kollinear, so können die Geraden sich lediglich '''schneiden''' oder '''windschief''' zueinander verlaufen. Unter sich schneidene Geraden verstehen wir Geraden, die sich in einem Punkt schneiden. Windschiefe Geraden hingegen sind Geraden, die sich wie die parallelen Geraden zwar nicht schneiden, ihre Richtungsvektoren sind jedoch nicht kollinear. | ||
Zeile 286: | Zeile 284: | ||
[[Datei:Zwei Geraden schneiden sich.png|mini|Zwei Geraden schneiden sich]] | |||
[[Datei: | [[Datei:Zwei windschiefe Geraden.png|mini|Zwei windschiefe Geraden]] | ||
[[Datei: | |||
Zeile 341: | Zeile 338: | ||
{{Lösung versteckt|1= Die vierte Antwort lautet ''identisch''. Die beiden Geraden sind identisch. Dies sehen wir daran, dass die Richtungsvekoren identisch sind (<math>\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>) und der Aufpunkt <math>(2|3|4)</math> der Geraden h auf der Geraden g liegt: <math>\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>. |2=Lösung Aufgabe d|3=Lösung Aufgabe d}} | {{Lösung versteckt|1= Die vierte Antwort lautet ''identisch''. Die beiden Geraden sind identisch. Dies sehen wir daran, dass die Richtungsvekoren identisch sind (<math>\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>) und der Aufpunkt <math>(2|3|4)</math> der Geraden h auf der Geraden g liegt: <math>\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}</math>. |2=Lösung Aufgabe d|3=Lösung Aufgabe d}} | ||
|Farbe={{Farbe|orange}}|3= Arbeitsmethode }} | |Farbe={{Farbe|orange}}|3= Arbeitsmethode }} | ||
Zeile 349: | Zeile 345: | ||
''' | '''b)'''<math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math> und <math>h \colon \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}, r \in \mathbb{R} </math> | ||
{{Lösung versteckt|1= Die erste Antwort lautet ''schneiden''. Die beiden Geraden ''schneiden'' sich im Punkt <math>\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}</math>. Dies erhält man, indem man beide Geradengleichungen in ein Gleichungssystem umformt, gleichsetzt und zu <math>r</math> und <math>t</math> umformt: | {{Lösung versteckt|1= Die erste Antwort lautet ''schneiden''. Die beiden Geraden ''schneiden'' sich im Punkt <math>\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}</math>. Dies erhält man, indem man beide Geradengleichungen in ein Gleichungssystem umformt, gleichsetzt und zu <math>r</math> und <math>t</math> umformt: | ||
Zeile 403: | Zeile 399: | ||
{{Lösung versteckt|1= Die | {{Lösung versteckt|1= Die zweite Antwort lautet ''windschief''. Die beiden Geraden sind ''windschief'' zueinander. Dies kannst du wie folgt berechnen. | ||
Zeile 453: | Zeile 449: | ||
|2=Lösung Aufgabe | |2=Lösung Aufgabe b|3=Lösung Aufgabe b}} | ||
|Farbe={{Farbe|orange}}|3= Arbeitsmethode}} | |Farbe={{Farbe|orange}}|3= Arbeitsmethode}} | ||
Version vom 18. Mai 2021, 14:14 Uhr
Geraden und ihre Darstellungsformen
Parameterdarstellung einer Geraden
Wie du nun eine Parametergleichung durch zwei gegebene Punkte aufstellst, wird im folgenden Video erklärt:
Im Folgenden kannst du sehen, wie die Gerade vom Stützvektor, Richtungsvektor und Parameter abhängt:
????Anmerkung zu den Lösungen: Wie du wahrscheinlich im obigen Video mitbekommen hast, gibt es unendlich viele Lösungen. Daher sind auch Vielfache der Richtungsvektoren oder andere Stützvektoren, wenn sie auf der Geraden liegen, möglich.????
Du kannst aber auch eine Gerade aufstellen, die durch einen Punkt verläuft und parallel zu einer anderen Gerade oder zu einer der Koordinatenachsen ist.
Punktprobe
Wie du überprüfst, ob ein gegebener Punkt auf einer gegebenen Gerade der daneben liegt, erfährst du im folgenden Video:
Spurpunkte einer Geraden
Wie du die Spurpunkte, also die Schnittpunkte der Geraden mit den Koordinatenebenen bestimmst, zeigt das folgende Video.
Falls du nicht mehr weißt, was die Koordinatenebenen sind, kannst unter folgendem Tipp noch einmal dein Wissen auffrischen:
Die -Ebene ist die Ebene, die von der - und -Achse aufgespannt wird (im Bild genannt). Entsprechendes gilt für die - (im Bild ) und -Ebene (im Bild ).
Hier kannst du dir die Spurpunkte von verschiedenen Geraden anzeigen lassen. Dazu kannst du die Punkte und anpassen, durch die die Gerade verlaufen soll. Dann kannst du dir die Koordinatebenen mit den verschiedenen Schnittpunkten anzeigen lassen:
Hier noch eine Aufgabe zu Geraden mit besonderen Lagen im Koordinatensystem:
Lagebeziehungen von Geraden
Parallele und identische Geraden