Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Winkel und Skalarprodukt (Vektoren bzw. Geraden): Unterschied zwischen den Versionen
In diesem Lernpfadkapitel beschäftigst du dich mit dem Skalarprodukt und dem Winkel zwischen zwei Vektoren beziehungsweise dem Winkel zwischen zwei Geraden.
Du lernst...
... das Skalarprodukt geometrisch zu deuten und zu berechnen.
... Vektoren und Geraden mit Hilfe des Skalarprodukts auf Orthogonalität zu überprüfen.
... den Winkel zwischen Vektoren und Geraden zu berechnen.
... geometrische Objekte und Situationen im Raum mit Hilfe des Skalarprodukts zu untersuchen.
(vgl. KLP NRW Sek. II)
Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen:
Mit Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit
und Aufgaben mit grünem Streifen sind Knobelaufgaben.
In diesem Abschnitt beschäftigen wir uns mit dem Skalarprodukt. Dieses ist ein wichtiger Bestandteil, um im weiteren Verlauf den Winkel zwischen zwei Vektoren und zwei Geraden berechnen zu können.
Einführung
Definition: Skalarprodukt
Für die beiden Vektoren und ist das Skalarprodukt definiert als .
Du hast immer noch keine genaue Vorstellung davon, wie du das Skalarprodukt zweier Vektoren berechnen kannst? Dann schaue dir das Video zum Thema Skalarprodukt an:
Berechne das Skalarprodukt der beiden Vektoren und . Notiere dein Ergebnis in dem jeweiligen Kästchen.
Aufgabe 2: Terme umformen
Wenn du Terme zuerst umformst, bevor du das Skalarprodukt berechnest, sparst du dir eine Menge Aufwand.
Löse die Klammern auf und fasse sinnvoll zusammen. Notiere deine Ergebnisse und überprüfe sie anschließend mit den Lösungen. Für die Vektoren müssen in dieser Aufgabe keine Werte eingesetzt werden.
Entscheide in den folgenden Aufgaben, wann der Malpunkt für das Skalarprodukt und wann er für die Multiplikation von Zahlen steht. Die Reihenfolge der Antworten innerhalb einer Antwortmöglichkeit soll der Reihenfolge der Malpunkte innerhalb der Aufgabe entsprechen.
Bei der Multiplikation von zwei reellen Zahlen erhältst du wieder eine reelle Zahl. Das Produkt von zwei Vektoren liefert jedoch nicht einen Vektor, sondern ebenfalls eine reelle Zahl. Diese ist genau durch das Skalarprodukt definiert.
Winkel
Im Folgenden schauen wir uns den Umgang mit Winkeln zwischen Vektoren und Geraden an.
"Orthogonal" bedeutet, dass die Vektoren im 90°-Winkel zueinander stehen.
Satz: Sonderfälle
Neben dem Sonderfall der Orthogonalität gibt es noch zwei weitere:
Wenn , dann haben die beiden Vektoren die gleiche Richtung.
Wenn , dann haben die beiden Vektoren entgegengesetzte Richtungen.
Aufgabe 4: Grafische Darstellung und Veränderungen durch den Winkel
Schau dir die folgende Darstellung zweier Vektoren an. Wie verändert sich das Skalarprodukt, wenn du die Länge eines Vektors veränderst?
https://www.geogebra.org/m/nJzV8Euq#material/qcHvSSPD --> Wie kann das eingebunden werden???
Berechne die Größe des Winkels zwischen den Vektoren und . Du darfst dafür deinen Taschenrechner verwenden. Runde das Ergebnis auf die zweite Nachkommastelle.
Aufgabe 6: Orthogonalität I
Stehen die Vektoren senkrecht (orthogonal) aufeinander?
Aufgabe 7: Orthogonalität II
Bestimme die fehlende Koordinate so, dass die Vektoren und orthogonal zueinander sind.
Aufgabe 8: Räumliches Vorstellungsvermögen
Sei und . Was lässt sich im zweidimensionalen Raum über die Beziehung von und sagen?
und sind nicht zwangsweise parallel zueinander. Durch die drei Dimensionen können sie drei unterschiedliche Richtungen haben. Dies lässt sich schon allein durch das Betrachten eines dreidimensionalen Koordinatensystems veranschaulichen.
Aufgabe 9: Räumliches Vorstellungsvermögen
Wie häufig wird das Skalarprodukt zwischen den (als Vektoren gedeuteten) Zeiger einer Uhr täglich null?
Jede Stunde befinden sich die beiden Uhrzeiger zweimal orthogonal zueinander.
Viermal am Tag, nämlich zu den Uhrzeiten 3, 9, 15 und 21Uhr, zählt der rechte Winkel zweimal.
Damit ergibt sich, dass das Skalarprodukt der beiden Uhrzeiger täglich 48 - 4 = 44 Mal null beträgt.
Winkel zwischen zwei Geraden
In diesem Abschnitt lernst du, wie man den Schnittwinkel zweier Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben.
Mache dich mit den Eigenschaften von Geraden vertraut. Es gibt vier mögliche Lagen zweier Geraden:
1. echt parallele Geraden,
2. identische Geraden,
3. windschiefe Geraden,
4. sich schneidende Geraden.
Schnittwinkel zwischen zwei Geraden
Mit dem Schnittwinkel ist immer der spitze Winkel zwischen zwei Geraden und nie der Stumpfwinkel gemeint, d.h. . Aus diesem Grund wird im Zähler der Winkelformel auch der Betrag verwendet.
Schnittwinkel zweier Geraden - Formel
Gegeben sind zwei sich schneidende Geraden in Parameterform
Die Formel zur Berechnung des Schnittwinkels der beiden Geraden lautet
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.