Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 118: | Zeile 118: | ||
|Arbeitsmethode | |Arbeitsmethode | ||
}} | }} | ||
===Punktprobe=== | ===Punktprobe=== | ||
Zeile 153: | Zeile 132: | ||
{{Box | {{Box | ||
|Aufgabe | |Aufgabe 3: Punktprobe mit einer Geraden I | ||
|Überprüfe, ob der Punkt <math>P</math> auf der Geraden <math>g</math> liegt. | |Überprüfe, ob der Punkt <math>P</math> auf der Geraden <math>g</math> liegt. | ||
Zeile 177: | Zeile 156: | ||
{{Box | {{Box | ||
|Aufgabe | |Aufgabe 4: Punktprobe mit einer Geraden II | ||
|Für welchen Wert <math>s </math> mit <math> s \in \mathbb{R} </math> liegt der Punkt <math>P</math> auf der Geraden <math>g: \vec{x} = \begin{pmatrix} 9 \\ -s \\ 2s \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, r \in \mathbb{R} </math>? | |Für welchen Wert <math>s </math> mit <math> s \in \mathbb{R} </math> liegt der Punkt <math>P</math> auf der Geraden <math>g: \vec{x} = \begin{pmatrix} 9 \\ -s \\ 2s \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, r \in \mathbb{R} </math>? | ||
Zeile 242: | Zeile 221: | ||
{{Box | {{Box | ||
|Aufgabe | |Aufgabe 5: Spurpunkte einer Geraden I | ||
|Berechne die Spurpunkte der Geraden <math>g</math> definiert durch <math>g: \vec{x} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, r \in \mathbb{R} </math>. | |Berechne die Spurpunkte der Geraden <math>g</math> definiert durch <math>g: \vec{x} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, r \in \mathbb{R} </math>. | ||
Zeile 266: | Zeile 245: | ||
|Farbe={{Farbe|orange}} | |Farbe={{Farbe|orange}} | ||
}} | }} | ||
Hier noch eine Aufgabe zu Geraden mit besonderen Lagen im Koordinatensystem: | |||
{{Box | |||
|Aufgabe 6: Geraden im Koordinatensystem | |||
|Kreuze die richtige(n) Antwort(en) an! | |||
{{LearningApp|width=100%|height=500px|app=p221zv0i321}} | |||
Falls du nicht mehr weißt, was die <math>x_1x_2</math>-, <math>x_1x_3</math>- und <math>x_2x_3</math>-Ebene sind, kannst unter folgendem Tipp noch einmal dein Wissen auffrischen: | |||
{{Lösung versteckt| | |||
Die <math>x_1x_2</math>-Ebene ist die Ebene, die von der <math>x_1</math>- und <math>x_2</math>-Achse aufgespannt wird (im Bild <math>E_{12}</math> genannt). Entsprechendes gilt für die <math>x_1x_3</math>- (im Bild <math>E_{13}</math>) und <math>x_2x_3</math>-Ebene (im Bild <math>E_{23}</math>). | |||
[[File:Koordinatenebenen.png|zentriert|300px|Die Koordinatenebenen]] | |||
|Tipp anzeigen | |||
|Tipp verbergen | |||
}} | |||
|Arbeitsmethode | |||
|Farbe={{Farbe|grün|dunkel}} | |||
}} | |||
==Lagebeziehungen von Geraden== | ==Lagebeziehungen von Geraden== |
Version vom 29. April 2021, 15:39 Uhr
Geraden und ihre Darstellungsformen
Parameterdarstellung einer Geraden
Wie du nun eine Parametergleichung durch zwei gegebene Punkte aufstellst, wird im folgenden Video erklärt:
Im Folgenden kannst du sehen, wie die Gerade vom Stützvektor, Richtungsvektor und Parameter abhängt:
????Anmerkung zu den Lösungen: Wie du wahrscheinlich im obigen Video mitbekommen hast, gibt es unendlich viele Lösungen. Daher sind auch Vielfache der Richtungsvektoren oder andere Stützvektoren, wenn sie auf der Geraden liegen, möglich.????
Du kannst aber auch eine Gerade aufstellen, die durch einen Punkt verläuft und parallel zu einer anderen Gerade oder zu einer der Koordinatenachsen ist.
Punktprobe
Wie du überprüfst, ob ein gegebener Punkt auf einer gegebenen Gerade der daneben liegt, erfährst du im folgenden Video:
Spurpunkte einer Geraden
Wie du die Spurpunkte, also die Schnittpunkte der Geraden mit den Koordinatenebenen bestimmst, zeigt das folgende Video:
Hier kannst du dir die Spurpunkte von verschiedenen Geraden anzeigen lassen. Dazu kannst du die Punkte und anpassen, durch die die Gerade verlaufen soll. Dann kannst du dir die Koordinatebenen mit den verschiedenen Schnittpunkten anzeigen lassen:
Hier noch eine Aufgabe zu Geraden mit besonderen Lagen im Koordinatensystem:
Lagebeziehungen von Geraden
Parallele und identische Geraden
windschiefe und sich schneidene Geraden