Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Punkte und Vektoren im Raum: Unterschied zwischen den Versionen
In diesem Lernpfadkapitel kannst du etwas über Punkte und Vektoren im Raum lernen und wirst erfahren, was Schrägbilder und Netze von geometrischen Körpern sind und wie du sie zeichnen kannst. Ebenfalls erwartet dich in diesem Kapitel, was unmögliche Figuren sind und woran du diese erkennen kannst. Dir stehen eine Vielzahl an verschiedenen Aufgaben zum Üben zur Verfügung.
Bei den Aufgaben unterscheiden wir folgende Typen:
In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Der Würfel besteht aus sechs gleichgroßen Flächen. Zudem besitzt der Würfel 12 gleichlange Kanten und acht Ecken.
Der Quader besteht aus sechs rechteckigen Seitenflächen, die im rechten Winkel aufeinander stehen. Die gegenüberliegenden Seiten sind jeweils parallel und gleich groß.
{{Box|1 = Übung 1: Lückentext Körper|2= Ziehe die korrekten Wörter in die jeweiligen Lücken.
Im nimmt man Körper auf der ebenen Fläche wahr.
Die des Quaders solltest du in zeichnen. Wenn der Quader eine von 8 cm und eine Höhe von 2 cm hat, ist das , das du als seine Vorderseite zeichnest, 8 cm breit und 2 cm hoch.
Ein Würfel hat Ecken, Flächen und Kanten. Außerdem sind alle Kanten lang und alle Flächen . Auch sind die Flächen groß.
Eine Pyramide ist ein Körper, der aus einem Vieleck (Drei-, Vier-, Fünfeck usw.) und mehreren besteht. Das Vieleck bildet die und die Dreiecke die der Pyramide.
Körpernetze und Schrägbilder sind Darstellungshilfen, die man in der Geometrie benutzt. Durch ein Schrägbild wird auf einer ebenen Fläche ein Körper räumlich dargestellt. Beispielsweise kann man einen dreidimensionalen Körper auf einem zweidimensionalen Blatt Papier abbilden.
Ein Körpernetz entsteht, wenn man den dreidimensionalen Körper an einigen Kanten aufschneiden und dann auseinanderklappen würde.
Bei einem Schrägbild zeichnest du den Köper, wie der Name schon sagt, schräg von der Seite. Hierbei ist wichtig, dass die schrägen Linien meistens im Winkel von ° gezeichnet werden. Je nach Blickpunkt, verändert sich die Perspektive auf den Körper. Die verdeckten Linien, die man von vorne nicht sehen kann, werden gestrichelt dargestellt.
Jeder Körper hat eine Grundfläche. Zum Zeichnen von Schrägbildern sollten mehrere Regeln berücksichtigt werden. Zunächst wird die Grundfläche des Körpers in der angegebenen Längeneinheit auf ein Blatt Papier übertragen. Die Längen, die in die Blattebene hinlaufen, werden verkürzt darstellt. Um die Längen zu verkürzen, multipliziert man die reale Länge der Kante mit einem Verkürzungsfaktor . Der Verkürzungsfaktor beträgt meistens . Zu beachten ist außerdem, dass die verkürzten Kanten schräg gezeichnet werden. Die Höhe steht immer senkrecht auf der Grundfläche und wird in der angegebenen Längeneinheit gezeichnet.
Beispielkonstruktion eines Quaders:
Übungen: Netze
Übung 1: Würfelnetze
Giovanni, Yasmin und Mehmet haben jeweils das Netz eines Würfels gezeichnet. Beurteile, ob die Körpernetze korrekt gezeichnet wurden.
1) Bei der Konstruktion eines Quaders werden lediglich die nach hinten verlaufenden Kanten verkürzt dargestellt. Da Deck- und Grundfläche parallel zueinander liegen, sind sie immer gleichgroß.
2) Zu jedem Körper gibt es mehrere Netze. Je nach dem welche Kante aufgeschnitten wird, entsteht ein anderes Netz.
3) Wenn du das Schrägbild korrekt gezeichnet hast, dann solltest du aus verschiedenen Perspektiven immer alle Ecken und Kanten sehen können.
4) Du konstruierst Schrägbilder, um geometrische Figuren bzw. räumliche Körper auf dem Papier darzustellen.
Übung 4: Netze der bekannten Körper
Für die folgende Aufgabe benötigst du einen gespitzten Bleistift, dein Heft und Geodreieck. Zeichne das Netz
a) einer Pyramide, welche aus vier gleichseitigen Dreiecken mit Seitenlänge cm und einer quadratischen Grundfläche mit Seitenlänge von cm besteht.
Netz 1 ist das Netz einer Pyramide, da alle Seiten der Dreiecke sich treffen, d.h. dass die benachbarten Seiten der Dreiecke jeweils gleich lang sind.
Netz 2 ist nicht das Netz einer Pyramide, da die längeren Seiten des höheren Dreiecks nicht mit den des weniger hohen Dreiecks übereinstimmen.
Netz 3 ist das Netz einer Pyramide, da alle Seiten der Dreiecke sich treffen, d.h. dass die benachbarten Seiten der Dreiecke jeweils gleich lang sind.
Netz 4 ist nicht das Netz einer Pyramide, da die Seiten der Dreiecke sich nicht treffen, wenn man die Dreiecke nach unten versucht zusammenzuklappen, d.h. die benachbarten Seiten der Dreiecke sind jeweils nicht gleich lang.
Netz 5 ist nicht das Netz einer Pyramide, da die Seiten der Dreiecke sich nicht treffen, d.h. dass die benachbarten Seiten der Dreiecke jeweils nicht gleich lang sind.
Übung 6: Netze von Prismen
Zeichne die folgenden Netze in dein Heft und ergänze fehlende Flächen, damit das Netz eines Prismas entsteht.
Schau dir zunächst noch einmal an, wie ein Prisma aussieht und welche Flächen es hat. Dann überlege dir, welche Flächen in den gegebenen Netzen fehlen könnten.
Vergleiche die angegebenen Lösungen mit deinen eigenen Netzen. Bei dieser Aufgabe solltest du beachten, dass die angegebenen Lösungen nur mögliche Lösungen sind.
Übungen: Schrägbilder
Übung 1: Memory
Gegeben sind Körpernetze und Schrägbilder. Finde die passenden Paare.
Falls du nicht mehr weißt, wie die Schrägbilder der bekannten Körper aussehen, dann guck noch einmal in der Erinnerungsbox zu den bekannten Körpern nach.
Falls du nicht mehr weißt, wie die Netze der bekannten Körper aussehen, dann guck noch einmal hier nach: Das Netz eines Quaders, dreieckigen Prismas, einer Pyramide und eines Tetraeders findest du in den Lösungen von Aufgabe "nach Konstruktion zeichnen". Das Netz eines Würfels siehst du, wenn du Aufgabe 1 zu Schrägbildern richtig gelöst hast.
Übung 2: Schrägbild zeichnen
Wie sieht das Schrägbild des folgenden Körpernetzes aus? Zeichne die Lösung in dein Heft und überprüfe dein Ergebnis mit der angegebenen Lösung.
Welche Kanten des Körper musst du ,,einschneiden" um das Netz zu formen? Überlege dir, was passiert, wenn du einige Kanten ,,einschneidest". Entsteht so dein Körpernetz?
,,Schneide" alle Kanten ein, die senkrecht von der quadratischen Grundfläche hochführen. Trenne nun die nicht-rechteckigen Seitenflächen der Grundfläche von der gegenüberliegenden Fläche der Grundfläche. Nun muss nur noch eine Kante ,,eingeschnitten" werden, um das Körpernetz zu erhalten.
So sieht eine mögliche Lösung des Körpernetztes des gegebenen Schrägbildes aus. Die Seiten, die senkrecht der Grundfläche hochgehen, wurden ,,eingeschnitten". Danach wurden die anliegenden nicht-rechteckigen Seiten der Grundfläche von der gegenüberliegenden Fläche der Grundfläche getrennt. Als letztes wurde eine rechteckige Seitenfläche der Grundfläche von der gegenüberliegenden Fläche der Grundfläche getrennt.
Übung 4: Schrägbilder korrigieren
Sofia hat im Unterricht das Schrägbild eines dreieckigen Prismas und eines Quaders, sowie Schrägbilder zweier Pyramiden gezeichnet. Beurteile, ob die Schrägbilder richtig sind. Falls sie falsch sind, finde die Fehler und korrigiere die Schrägbilder.
Figur 1: Die versteckten Linien wurden nicht gestrichelt gezeichnet.
Figur 2: Hier liegt der Fehler darin, dass die markierten Längen, die in die Blattebene hinlaufen, auf der linken Seite des Quaders nicht denselben Winkel haben wie die anderen beiden, die in die Blattebene laufen, auf der rechten Seite. (Hier hättest du genauso gut die anderen beiden Längen, die in Blattebene hineinlaufen, auf der rechten Seite als Fehler markieren können.) Weiterhin wurde die hintere versteckte Linien nicht gestrichelt gezeichnet.
Figur 3: Hier sehen wir, dass die markierte Länge, die in die Blattebene hinlaufen, nicht denselben Winkel haben wie die anderen beiden, die in die Blattebene laufen. Somit verändert sich auch die eine Seite des hinteren Dreiecks.
Ein Quader hat eine Länge von cm, eine Breite von cm und eine Höhe von cm. Zeichne sein Schrägbild in dein Heft und miss mit dem Lineal nach, wie weit die Ecke unten links vorn von der Ecke oben rechts hinten entfernt ist.
Jetzt multiplizierst du die angegebene Breite mit dem Verkürzungsfaktor . Die errechnete Kantenlänge von cm soll jetzt die Länge der Hilfsgeraden darstellen. Hier passt du deine anfänglich gezeichneten Hilfsgeraden an die Länge von cm an.
Ein gleichseitiges Prisma hat eine Seitenlänge von cm und eine Höhe von cm. Zeichne das Schrägbild in dein Heft und miss mit dem Lineal nach, wie weit die vordere Ecke unten rechts von der hinteren Ecke oben entfernt ist.
Da es sich bei dem Körper um ein gleichseitiges Prisma handelt, schneidet die Höhe die Strecke genau im Mittelpunkt . Von diesem Punkt ziehst du nun in einem Winkel von ° eine Hilfslinie. Um die Länge der Hilfslinie zu ermitteln, multiplizierst du die angegebene Höhe mit . Hier hätte die Strecke dann eine Länge von cm.
Nun zeichnest du jeweils von den Punkten , und eine senkrechte Linie, die der Höhe von cm entspricht. Um die Konstruktion abzuschließen, verbindest du die weiteren Eckpunkte miteinander.
Für diese Aufgabe benötigst du einen gespitzten Bleistift, Heft und Geodreieck. Zeichne eine Pyramide mithilfe folgender Konstruktionsbeschreibung. Die Kantenlängen kannst du frei wählen.
Schritt 1: Die quadratische Grundfläche der Pyramide wird als Parallelogramm gezeichnet. Dabei werden die nach hinten verlaufenden Kanten im Winkel von ° gezeichnet und in ihrer Länge halbiert.
Schritt 2: Die Spitze der Pyramide wird senkrecht über dem Mittelpunkt der Grundfläche angenommen.
Schritt 3: Die Spitze der Pyramide wird mit den Eckpunkten , , und der Grundfläche verbunden. Sichtbare Linien werden durchgezeichnet. Nicht sichtbare Linien werden punktiert.
Unmögliche Figuren sind grafisch zweidimensionale Figuren, die dreidimensional erscheinen aber als Körper in der Realität nicht existieren können. Die geometrischen, dreidimensionalen Objekte kann man in der Realität gar nicht herstellen. Gezeichnet werden können sie auf (dem zweidimensionalen) Papier aber ohne Probleme. Bei den Figuren handelt es sich meist um optische Täuschungen.
Beispiele von unmöglichen Figuren:
Die unmögliche Lattenkiste
Unmöglicher Würfel
Idee
Vielleicht kennst du ja auch schon ein paar unmögliche Figuren, natürlich nicht aus unserer Realität, aber ja aus Filmen? Eine der obigen Figuren kommt zum Beispiel in einer Szene aus Inception (2010) vor, die du dir hier auf YouTube angucken kannst:
Im unteren Kasten siehst du unmögliche Figuren und nicht unmögliche Figuren. Bestimme, ob die Figuren unmöglich sind oder nicht. Ziehe dafür das Bild in den zugehörigen Kasten.
geometrische Körper/Konstruktionen
unmögliche Figuren
Übung 2: Aus unmöglich mach möglich!
Wie müsste man den unmöglichen Würfel verändern, damit diese/r keine unmögliche Figur mehr ist?
Man müsste die hinteren Seitenkannten des Würfels zerschneiden, um die vorderen an dieser Stelle sichtbar zu machen. Einen echten, nicht unmöglichen Würfel siehst du hier:
Übung 3: Das Penrose-Dreieck
Betrachte das sogenannte Penrose-Dreieck. Welche Besonderheiten fallen dir auf? Wordurch wird die optische Täuschung hervorgerufen? Welches mathematische Gesetz zeigt, dass das Dreieck im Dreidimensionalen nicht existieren kann? Beantworte im Heft.
Das Penrose-Dreieck hat drei Seiten, die jeweils im rechten Winkel zueinander stehen und dennoch zu einem Dreieck verbunden sind. Damit verstößt es gegen mehrere mathematische Gesetze der Geometrie. Zum Beispiel beträgt die Winkelsumme in einem Dreieck immer °.
Aufgabe 9 - Vektoren addieren und mit einem Skalar multiplizieren
Aufgabe 10: Lückentext - Geometrische Bedeutung von Vektoraddition und skalarer Multiplikation
Wir definieren zwei für Vektoren: das Bilden des Vielfachen und der Summe. Die bezeichnet das bilden der zweier Vektoren gleichen Typs, das heißt dass die beiden Vektoren gleich viele haben. Man bildet die Summe, indem man die der Vektoren addiert. Wir können uns die Addition von Vektoren als ein „“ von zwei von ggf. verschiedener Länge vorstellen. Nennen wir und Vektoren. Wir deuten diese als und addieren sie, das heißt wir legen sie hintereinander, sodass der von und die „“ von übereinstimmen. Ein derartiges Verhalten von Pfeilen ist aus der bekannt. Dort werden oftmals und Geschwindigkeiten mit Pfeilen dargestellt. Man kann am Ende zur Addition sagen, dass das Bilden der Summe zweier Vektoren als der durch und dargestellten gesehen werden kann.
Das Bilden des eines Vektors wird auch als bezeichnet. Wir nennen unseren wieder und das bezeichnen wir mit . Von jedem Vektor kann das gebildet werden, indem von werden. Ist so wird der „Pfeil“ von um den Faktor aufgeblasen () oder geschrumpft (). Ist , so erhält der Pfeil, der um den Faktor aufgeblasen oder geschrumpft wird, noch eine und wird zum .
Wir nennen zwei Vektoren (oder parallel), wenn einer der Vektoren ein ist. Mit anderen Worten: Wenn und zwei Vektoren sind, so sind sie zueinander, falls ein existiert, sodass gilt: . Dabei ist es egal, ob die beiden Vektoren in zeigen oder nicht.
VektoradditionStreckenSpitzeVielfaches des anderenalle KomponentenHintereinander-Ausführenmit multipliziertverschiedenefalls RechenoperationenSkalarVektorparallel/kollinearSkalar kollinearRichtungenunterschiedlichePfeileVerschiebungen -FacheRichtungsumkehrungSummefalls komponentenweiseAnfangEinträgeKomponentenKräfteGegenvektorPhysikAneinanderlegenVielfachenMultiplikation mit einem Skalar
Aufgabe 11 - Für die ganz Schnellen eine Knobelaufgabe: Besondere Vierecke
In einem kartesischen Koordinatensystem sind die Punkte , und gegeben.
Verwende den Vektor am Punkt und den Vektor am Punkt .
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.