Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Abstände von Objekten im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 205: | Zeile 205: | ||
{{Box | 1=Aufgabe 5 Grafische Darstellung: Abstand eines Punktes von einer Geraden | 2= | {{Box | 1=Aufgabe 5 Grafische Darstellung: Abstand eines Punktes von einer Geraden | 2= | ||
Bewege den Punkt <math>Q</math> auf der Geraden <math>g</math>, um dir den jeweiligen Abstand zwischen den Punkten <math>P</math> und <math>Q</math> anzeigen zu lassen. Rechts neben der Geraden siehst du, wie groß der Abstand jeweils ist. | |||
Wann ist | Wann ist der Abstand vom Punkt <math>P</math> zur Geraden <math>g</math> am kleinsten? | ||
Wie nennt man | Wie groß ist der Winkel zwischen <math>g</math> und der Geraden durch <math>P</math> und <math>Q</math>? | ||
Versuche es zuerst | Wie nennt man <math>Q</math> dann? | ||
Versuche es zuerst ohne die Hilfslinie. Überprüfe dich dann selbst. | |||
<ggb_applet id="Ty5XzHyg" width="1578" height="772" border="888888" /> | <ggb_applet id="Ty5XzHyg" width="1578" height="772" border="888888" /> | ||
Zeile 214: | Zeile 215: | ||
Link, falls es nicht funktioniert hat: https://www.geogebra.org/material/show/id/cFTUcwnd# | Link, falls es nicht funktioniert hat: https://www.geogebra.org/material/show/id/cFTUcwnd# | ||
{{Lösung versteckt|1=Der Abstand <math> | {{Lösung versteckt|1=Der Abstand <math>Abst(P,Q)=d(P,g)</math> ist am kleinsten, wenn <math>vec{PQ}</math> orthogonal zu <math>g</math> ist. Dies kannst du sehen, wenn du dir die Hilfslinie anzeigen lässt. | ||
Dann nennt man den Punkt <math>Q</math> den Lotfußpunkt von <math>P</math> auf <math>g</math>. | Dann nennt man den Punkt <math>Q</math> den Lotfußpunkt von <math>P</math> auf <math>g</math>. | ||
|2=Lösung anzeigen|3=Lösung verbergen}} | |2=Lösung anzeigen|3=Lösung verbergen}} | ||
Zeile 284: | Zeile 285: | ||
| 3=Arbeitsmethode}} | | 3=Arbeitsmethode}} | ||
Version vom 29. April 2021, 07:47 Uhr
Motivation?
- ganz am Anfang, zur Motivation: 3 Situationen, zuordnen lassen, welche Punkt-Ebene, Punkt-Gerade usw. ist (mit Learning App), mit Bild
Abstand eines Punktes von einer Ebene
Das Lotfußpunktverfahren
Weitere Aufgaben:
- stumpf das Verfahren anwenden. Lösungsweg anzeigen lassen und Tipps (Aufgabe zum Wiederholen/Vertiefen/Üben)
- Janne: man hat Ebene und bestimmten Abstand. Jetzt Punkt bestimmen, der diesen Abstand hat (wie Pyramidenaufgabe)
- Janne: Modellierungsaufgabe (zb aus Diagnosetest oder woanders her)
Die Hesse´sche Normalenform
Um den Abstand zwischen einem Punkt und einer Ebene zu bestimmen, gibt es neben dem Lotverfahren auch die Möglichkeit, dies mit der Hesse´schen Normalenform zu berechnen. In diesem Kapitel lernst du, wie du die Normalenform aufstellst und sie zur Abstandsberechnung anwendest.
Falls du noch nicht genug hast, kannst du auch versuchen, die Aufgaben vom Lotfußpunktverfahren mit der Hesse´schen Normalenform zu lösen
Abstand eines Punktes von einer Geraden
- Verfahren wiederholen (evtl.)
- Merksatz
- Aufgaben 2-3 (Idee: auch mal was begründen/ vermuten/ argumentieren lassen)
Wenn es geht, GeoGebra einbauen!!!
Abstand zweier windschiefer Geraden
- Janne: Verfahen in richtige Reihenfolge bringen
- Janne: Merksatz
- Aufgaben 2 (Idee: auch mal was begründen/vermuten/ argumentieren lassen)
Wenn es geht, GeoGebra einbauen!!!
Gemischte Aufgaben
- auf Anfangsaufgabe zurückkommen
- 3 Aufgaben
Wenn es geht, GeoGebra einbauen!!!