Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in allgemeinen Dreiecken: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung Markierung: Quelltext-Bearbeitung 2017 |
KKeine Bearbeitungszusammenfassung Markierung: Quelltext-Bearbeitung 2017 |
||
| Zeile 28: | Zeile 28: | ||
② Berechne h<sub>a</sub>:<br> | ② Berechne h<sub>a</sub>:<br> | ||
sin β = <math>\tfrac{ | sin β = <math>\tfrac{h_a}{c}</math> | ·c<br> | ||
c · sin β = h<sub>a</sub> <br> | c · sin β = h<sub>a</sub> <br> | ||
8,5 · sin(42°) = h<sub>a</sub> <br> | 8,5 · sin(42°) = h<sub>a</sub> <br> | ||
Version vom 8. März 2021, 12:22 Uhr
SEITE IM AUFBAU
Startseite (Vorwissen)
1) Sinus, Kosinus, Tangens
2) Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken
3 Strecken- und Winkelberechnungen in allgemeinen Dreiecken
Die Seitenverhältnisse Sinus, Kosinus und Tanges gelten nur für rechtwinklige Dreiecke.
Um in allgemeinen Dreiecken Strecken und Winkel berechnen zu können, zerlege das Dreieck mithilfe einer Höhe in zwei rechtwinklige Dreiecke.
Beispiel 1: Eine Seite und zwei Winkel sind gegeben
① Bestimme γ:
Winkelsummensatz
γ = 180° - α - β
&nbps; = 180° - 42° - 62°
= 76°
② Berechne ha:
sin β = | ·c
c · sin β = ha
8,5 · sin(42°) = ha
5,7 (cm) ha
③ Berechne b:
sin γ = | ·b
b · sin γ = ha | : sin γ
b =
b =
b 5,9 (cm)
④ Berechne a1:
