Benutzer:Buss-Haskert/Zinseszins: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
K (Tipp ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 76: | Zeile 76: | ||
</div> | </div> | ||
{{Box|1=Hefteintrag: Zinseszins|2=Zinseszins bedeutet, dass ein Startkapital Zinsen erwirtschaftet und in Zukunft diese Zinsen ebenfalls verzinst | {{Box|1=Hefteintrag: Zinseszins|2=Zinseszins bedeutet, dass ein Startkapital Zinsen erwirtschaftet und diese Zinsen werden dem Vermögen am Jahresende gutgeschrieben. So werden in Zukunft diese Zinsen ebenfalls verzinst.<br> | ||
Das Kapital nach n Jahren wird mit der Formel <br> | Das Kapital nach n Jahren wird mit der Formel <br> | ||
'''<big>K<sub>n</sub> = K<sub>0</sub> ∙ (1+p%)<sup>n</sup><br> | '''<big>K<sub>n</sub> = K<sub>0</sub> ∙ (1+p%)<sup>n</sup><br> | ||
Zeile 90: | Zeile 90: | ||
Bei diesem Kapitalwachstum handelt es sich um ein sogenanntes exponentielles Wachstum. | Bei diesem Kapitalwachstum handelt es sich um ein sogenanntes exponentielles Wachstum. | ||
{{Box|Übung 1 (online)|Löse auf der Seite [https://mathe.aufgabenfuchs.de/zins/zinseszins.shtml '''Aufgabenfuchs'''] die Aufgaben | |||
* 1 | |||
* 2 | |||
* 3|Üben}} | |||
{{Box|Übung 2|a) Ein Kapital von 2000€ wird zu einem Zinssatz von 2% angelegt. Berechne das Kapital nach 4 Jahren.<br> | |||
b) Ein Vermögen von 7500€ wird zu einem Zinssatz von 1,5% angelegt (mit Zinseszins). Berechne das Kapital nach 5 Jahren.|Üben}} | |||
{{Lösung versteckt|Vergleiche deine Lösung mit dem Beispiel a) auf S. 73 oben.|Tipp zu a)|Verbergen}} | |||
{{Lösung versteckt|1=geg:K = 7500€; p% = 1,5% = 0,015, also q = 1 + 0,015 =1,015; n = 5<br> | |||
K<sub>5</sub> = K<sub>0</sub> ∙ q<sup>5</sup> <br> | |||
= 7500 ∙ 1,015<sup>5</sup><br> | |||
= 8079,63 (€)|2=Tipp zu b)|3=Verbergen}} |
Version vom 9. Februar 2021, 12:21 Uhr
SEITE IM AUFGABAU!!
Wachstum - Zinseszins
Einstieg: Sparschwein
Deine Oma schenkt dir zu deiner Geburt 1000€. Nun muss sie entscheiden, wie sie das Geld für dich angelegt. Die Bank bietet ihr einen Zinssatz von 5% an. Berechne, wie viel Geld du mit 18 Jahren bekämst. Übertrage die beiden Möglichkeiten in dein Heft und fülle die Tabelle aus.
1. Möglichkeit:
Sie lässt sich die Zinsen jedes Jahr auszahlen und spart sie in einem Sparschwein.
Sie lässt sich die Zinsen jedes Jahr auszahlen und spart sie in einem Sparschwein.
K = 1000€; p% = 5% = 0,05
Jahre | Guthaben(€) |
0 | 1000 |
1 | 1050 |
2 | 1100 |
3 | 1150 |
... | ... |
18 | ... |
2. Möglichkeit:
Sie lässt die Zinsen auf dem Sparbuch und fügt sie so jährlich dem Kapital zu.
Sie lässt die Zinsen auf dem Sparbuch und fügt sie so jährlich dem Kapital zu.
K = 1000€; p% = 5% = 0,05
Jahre | Guthaben(€) |
0 | 1000 |
1 | 1050 |
2 | 1102,50 |
3 | 1157,625 |
... | ... |
18 | ... |
Kannst du eine Formel angeben, mit der du den Endbetrag berechnen kannst?
Kapital nach 18 Jahren:
K18 = ...
K18 = ...
Kapital nach 18 Jahren:
K18 = ...
K18 = ...
Bei diesem Kapitalwachstum handelt es sich um ein sogenanntes exponentielles Wachstum.
Vergleiche deine Lösung mit dem Beispiel a) auf S. 73 oben.
geg:K = 7500€; p% = 1,5% = 0,015, also q = 1 + 0,015 =1,015; n = 5
K5 = K0 ∙ q5
= 7500 ∙ 1,0155