Benutzer:Buss-Haskert/Zinseszins: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
K (Tipp ergänzt)
Markierung: 2017-Quelltext-Bearbeitung
Zeile 76: Zeile 76:
</div>
</div>


{{Box|1=Hefteintrag: Zinseszins|2=Zinseszins bedeutet, dass ein Startkapital Zinsen erwirtschaftet und in Zukunft diese Zinsen ebenfalls verzinst werden.<br>
{{Box|1=Hefteintrag: Zinseszins|2=Zinseszins bedeutet, dass ein Startkapital Zinsen erwirtschaftet und diese Zinsen werden dem Vermögen am Jahresende gutgeschrieben. So werden  in Zukunft diese Zinsen ebenfalls verzinst.<br>
Das Kapital nach n Jahren wird mit der Formel <br>
Das Kapital nach n Jahren wird mit der Formel <br>
'''<big>K<sub>n</sub> = K<sub>0</sub> ∙ (1+p%)<sup>n</sup><br>
'''<big>K<sub>n</sub> = K<sub>0</sub> ∙ (1+p%)<sup>n</sup><br>
Zeile 90: Zeile 90:


Bei diesem Kapitalwachstum handelt es sich um ein sogenanntes exponentielles Wachstum.
Bei diesem Kapitalwachstum handelt es sich um ein sogenanntes exponentielles Wachstum.
{{Box|Übung 1 (online)|Löse auf der Seite [https://mathe.aufgabenfuchs.de/zins/zinseszins.shtml '''Aufgabenfuchs'''] die Aufgaben
* 1
* 2
* 3|Üben}}
{{Box|Übung 2|a) Ein Kapital von 2000€ wird zu einem Zinssatz von 2% angelegt. Berechne das Kapital nach 4 Jahren.<br>
b) Ein Vermögen von 7500€ wird zu einem Zinssatz von 1,5% angelegt (mit Zinseszins). Berechne das Kapital nach 5 Jahren.|Üben}}
{{Lösung versteckt|Vergleiche deine Lösung mit dem Beispiel a) auf S. 73 oben.|Tipp zu a)|Verbergen}}
{{Lösung versteckt|1=geg:K = 7500€; p% = 1,5% = 0,015, also q = 1 + 0,015 =1,015; n = 5<br>
K<sub>5</sub> = K<sub>0</sub> ∙ q<sup>5</sup> <br>
&nbsp;&nbsp; = 7500 ∙ 1,015<sup>5</sup><br>
&nbsp;&nbsp; = 8079,63 (€)|2=Tipp zu b)|3=Verbergen}}

Version vom 9. Februar 2021, 12:21 Uhr

SEITE IM AUFGABAU!!

Wachstum - Zinseszins

Zinseszins

In diesem Lernpfad lernst du

  • was Zinseszinsen sind,
  • welche Bedeutung Zinseszinsen für Kapitalanlage haben,
  • welcher Unterschied zwischen der Geldanlage mit und ohne Zinseszinsen besteht.

Einstieg: Sparschwein

Deine Oma schenkt dir zu deiner Geburt 1000€. Nun muss sie entscheiden, wie sie das Geld für dich angelegt. Die Bank bietet ihr einen Zinssatz von 5% an. Berechne, wie viel Geld du mit 18 Jahren bekämst. Übertrage die beiden Möglichkeiten in dein Heft und fülle die Tabelle aus.


1. Möglichkeit:
Sie lässt sich die Zinsen jedes Jahr auszahlen und spart sie in einem Sparschwein.

K = 1000€; p% = 5% = 0,05

Jahre Guthaben(€)
0 1000
1 1050
2 1100
3 1150
... ...
18 ...
2. Möglichkeit:
Sie lässt die Zinsen auf dem Sparbuch und fügt sie so jährlich dem Kapital zu.

K = 1000€; p% = 5% = 0,05

Jahre Guthaben(€)
0 1000
1 1050
2 1102,50
3 1157,625
... ...
18 ...

Kannst du eine Formel angeben, mit der du den Endbetrag berechnen kannst?

Kapital nach 18 Jahren:
K18 = ...
Kapital nach 18 Jahren:
K18 = ...


Hefteintrag: Zinseszins

Zinseszins bedeutet, dass ein Startkapital Zinsen erwirtschaftet und diese Zinsen werden dem Vermögen am Jahresende gutgeschrieben. So werden in Zukunft diese Zinsen ebenfalls verzinst.
Das Kapital nach n Jahren wird mit der Formel
Kn = K0 ∙ (1+p%)n
      = K0 ∙ qn    mit q = 1+p%

Beispiel:
geg: K0 = 1000€ (Startkapital, Null Jahre); p% = 5% = 0,05; q = 1 + p% = 1 + 0,05 = 1,05; n = 18 Jahre
ges: Kn (Kapital nach n Jahren)

K18 = 1000 ∙ 1,0518
      = 2406,62 (€)

Nach 18 Jahren ist das Kapital auf 2406,62 € angewachsen.

Bei diesem Kapitalwachstum handelt es sich um ein sogenanntes exponentielles Wachstum.


Übung 1 (online)

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 1
  • 2
  • 3


Übung 2

a) Ein Kapital von 2000€ wird zu einem Zinssatz von 2% angelegt. Berechne das Kapital nach 4 Jahren.

b) Ein Vermögen von 7500€ wird zu einem Zinssatz von 1,5% angelegt (mit Zinseszins). Berechne das Kapital nach 5 Jahren.
Vergleiche deine Lösung mit dem Beispiel a) auf S. 73 oben.

geg:K = 7500€; p% = 1,5% = 0,015, also q = 1 + 0,015 =1,015; n = 5
K5 = K0 ∙ q5
   = 7500 ∙ 1,0155

   = 8079,63 (€)