Digitale Werkzeuge in der Schule/Fit für VERA-8/Stochastik: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 695: | Zeile 695: | ||
Für das Ereignis eine Dame zu ziehen gibt es insgesamt 4 Karten. Also 4 mögliche Ergebnisse, dessen Wahrscheinlichkeiten nach der Summenregel addiert werden können. | Für das Ereignis eine Dame zu ziehen gibt es insgesamt 4 Karten. Also 4 mögliche Ergebnisse, dessen Wahrscheinlichkeiten nach der Summenregel addiert werden können. | ||
P("Dame wird gezogen") = <math>\tfrac{1}{32}</math> + <math>\tfrac{1}{32}</math> + <math>\tfrac{1}{32}</math> + <math>\tfrac{1}{32}</math> = <math>4 \cdot </math> <math>\tfrac{1}{32}</math> = <math>\tfrac{4}{32}</math> = <math>\tfrac{1}{8}</math>|2=Lösung a)|3=Lösung}} | |||
{{Lösung versteckt|1='''b)''' Es gibt insgesamt 8 Kreuz-Karten. | {{Lösung versteckt|1='''b)''' Es gibt insgesamt <math>8</math> Kreuz-Karten. | ||
Also gilt mit der Summenregel: P( | Also gilt mit der Summenregel: P("Kreuz-Karte wird gezogen") = <math>\tfrac{1}{32}</math> + <math>\tfrac{1}{32}</math> + <math>\tfrac{1}{32}</math> + <math>\tfrac{1}{32}</math> + <math>\tfrac{1}{32}</math> + <math>\tfrac{1}{32}</math> + <math>\tfrac{1}{32}</math> + <math>\tfrac{1}{32}</math> = <math>8 \cdot</math> <math>\tfrac{1}{32}</math> = <math>\tfrac{8}{32}</math> = <math>\tfrac{1}{4}</math>|2=Lösung b)|3=Lösung}} | ||
{{Lösung versteckt|1='''c)''' Es gibt 8 Pik und 8 Kreuz-Karten, also insgesamt 16 schwarze Karten. | {{Lösung versteckt|1='''c)''' Es gibt <math>8</math> Pik und <math>8</math> Kreuz-Karten, also insgesamt <math>16</math> schwarze Karten. | ||
Also gilt mit der Summenregel: P("Schwarze-Karte wird gezogen") = 16 \cdot <math>\tfrac{1}{32}</math> = <math>\tfrac{16}{32}</math> = <math>\tfrac{1}{2}</math>|2=Lösung c)|3=Lösung}} | Also gilt mit der Summenregel: P("Schwarze-Karte wird gezogen") = 16 \cdot <math>\tfrac{1}{32}</math> = <math>\tfrac{16}{32}</math> = <math>\tfrac{1}{2}</math>|2=Lösung c)|3=Lösung}} | ||
Zeile 731: | Zeile 731: | ||
{{Lösung versteckt|1='''a)''' Insgesamt gibt es 13 Spielsteine. Aufgrund der übereinstimmenden Größe und Beschaffenheit der Steine, ist die Wahrscheinlichkeit für jeden einzelnen Spielstein gleich und beträgt <math>\tfrac{1}{13}</math>. Aus diesem Grund handelt es sich bei dieser Aufgabe um ein Laplace Experiment. | {{Lösung versteckt|1='''a)''' Insgesamt gibt es <math>13</math> Spielsteine. Aufgrund der übereinstimmenden Größe und Beschaffenheit der Steine, ist die Wahrscheinlichkeit für jeden einzelnen Spielstein gleich und beträgt <math>\tfrac{1}{13}</math>. Aus diesem Grund handelt es sich bei dieser Aufgabe um ein Laplace Experiment. | ||
E = Es wird ein D gezogen. | E = Es wird ein D gezogen. | ||
Zeile 747: | Zeile 747: | ||
{{Lösung versteckt|1='''c)''' E = Es wird ein O gezogen. | {{Lösung versteckt|1='''c)''' E = Es wird ein O gezogen. | ||
Es gibt insgesamt 3 Spielsteine mit dem Buchstaben N, die jeweils mit einer Wahrscheinlichkeit von <math>\tfrac{1}{13}</math> gezogen werden. Wegen der Summenregel für Laplace-Experimente können die Wahrscheinlichkeiten der drei möglichen Ergebnisse bzw. Spielsteine für das Ereignis addiert werden. | Es gibt insgesamt <math>3</math> Spielsteine mit dem Buchstaben N, die jeweils mit einer Wahrscheinlichkeit von <math>\tfrac{1}{13}</math> gezogen werden. Wegen der Summenregel für Laplace-Experimente können die Wahrscheinlichkeiten der drei möglichen Ergebnisse bzw. Spielsteine für das Ereignis addiert werden. | ||
Es gilt also: P(E) = <math>\tfrac{1}{13}</math> + <math>\tfrac{1}{13}</math> + <math>\tfrac{1}{13}</math> = <math>\tfrac{3}{13}</math>|2=Lösung c) |3=Lösung}} | Es gilt also: P(E) = <math>\tfrac{1}{13}</math> + <math>\tfrac{1}{13}</math> + <math>\tfrac{1}{13}</math> = <math>\tfrac{3}{13}</math>|2=Lösung c) |3=Lösung}} | ||
Zeile 762: | Zeile 762: | ||
Es wird mit zwei Würfeln gewürfelt. Wie hoch ist die Wahrscheinlichkeit, dass… | Es wird mit zwei Würfeln gewürfelt. Wie hoch ist die Wahrscheinlichkeit, dass… | ||
'''a)''' …ein Pasch gewürfelt wird? | '''a)''' …ein Pasch (Zweimal die Gleiche Zahl, z.B. {1,1}) gewürfelt wird? | ||
'''b)''' …die Differenz der Augenzahlen gleich drei ist? | '''b)''' …die Differenz der Augenzahlen gleich drei ist? | ||
{{Lösung versteckt|1= Überlege dir, welche Zahlenkombinationen zu einer Differenz von 3 führen. Denke insbesondere daran, dass die einzelnen Kombinationen jeweils in zwei unterschiedlichen Reihenfolgen gewürfelt werden können.|2=Tipp |3=Tipp}} | {{Lösung versteckt|1= Überlege dir, welche Zahlenkombinationen zu einer Differenz von <math>3</math> führen. Denke insbesondere daran, dass die einzelnen Kombinationen jeweils in zwei unterschiedlichen Reihenfolgen gewürfelt werden können.|2=Tipp |3=Tipp}} | ||
'''c)''' …die Summe der Augenzahlen eine Primzahl ist? | '''c)''' …die Summe der Augenzahlen eine Primzahl ist? | ||
{{Lösung versteckt|1=Primzahl: ganze Zahl, die größer als 1 und nur durch 1 und sich selbst teilbar ist. | {{Lösung versteckt|1=Primzahl: ganze Zahl, die größer als <math>1</math> und nur durch <math>1</math> und sich selbst teilbar ist. | ||
{{Lösung versteckt|1=Die Primzahlen, die mit zwei Würfeln erreicht werden können, sind die 2, 3, 5, 7 und 11. Überlege dir jetzt, mit welchen der möglichen Zahlenkombinationen von zwei Würfeln man mithilfe der Addition auf diese Primzahlen kommt.|2=Tipp2 |3=Tipp}} | {{Lösung versteckt|1=Die Primzahlen, die mit zwei Würfeln erreicht werden können, sind die <math>2, 3, 5, 7 und 11</math>. Überlege dir jetzt, mit welchen der möglichen Zahlenkombinationen von zwei Würfeln man mithilfe der Addition auf diese Primzahlen kommt.|2=Tipp2 |3=Tipp}} | ||
|2=Tipp |3=Tipp}} | |2=Tipp |3=Tipp}} | ||
{{Lösung versteckt|1=Mit jeder Zahl kann ein Pasch geworfen werden. Es gibt demnach insgesamt 6 verschiedene Pasche. Da die jeweiligen Zahlen identisch sind, ist die Reihenfolge nicht zu betrachten. | {{Lösung versteckt|1=Mit jeder Zahl kann ein Pasch geworfen werden. Es gibt demnach insgesamt <math>6</math> verschiedene Pasche. Da die jeweiligen Zahlen identisch sind, ist die Reihenfolge nicht zu betrachten. | ||
Das Ereignis ist also: E = { {1,1}; {2,2}; {3,3}; {4,4}; {5,5}; {6,6} } | Das Ereignis ist also: E = { {1,1}; {2,2}; {3,3}; {4,4}; {5,5}; {6,6} } | ||
Es gibt somit insgesamt 6 verschiedene Ergebnisse für das Ereignis. Die einzelnen Ergebnisse haben alle eine Wahrscheinlichkeit von <math>\tfrac{1}{36}</math>, da es mit zwei Würfeln insgesamt 36 verschiedene Zahlenkombinationen gibt. | Es gibt somit insgesamt <math>6</math> verschiedene Ergebnisse für das Ereignis. Die einzelnen Ergebnisse haben alle eine Wahrscheinlichkeit von <math>\tfrac{1}{36}</math>, da es mit zwei Würfeln insgesamt <math>36</math> verschiedene Zahlenkombinationen gibt. | ||
Also folgt mit der Summenregel: P(E) = <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> = 6 | Also folgt mit der Summenregel: P(E) = <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> = <math>6 \cdot</math> <math>\tfrac{1}{36}</math> = <math>\tfrac{6}{36}</math> = <math>\tfrac{1}{6}</math>|2=Lösung a) |3=Lösung}} | ||
{{Lösung versteckt|1= Es gibt | {{Lösung versteckt|1= Es gibt <math>3</math> unterschiedliche Kombinationen von Zahlen, deren Differenz <math>3</math> beträgt. Die 4 und 1, die 5 und 2 & die 6 und 3. Die einzelnen Kombinationen können jeweils in zwei unterschiedlichen Reihenfolgen geworfen werden. | ||
Das Ereignis ist also: E = { {1,4}; {4,1}; {2,5}; {5,2}; {3,6}; {6,3} } | Das Ereignis ist also: E = { {1,4}; {4,1}; {2,5}; {5,2}; {3,6}; {6,3} } | ||
Es gibt somit insgesamt 6 verschiedene Ergebnisse für das Ereignis. Die einzelnen Ergebnisse haben alle eine Wahrscheinlichkeit von <math>\tfrac{1}{36}</math>, da es mit zwei Würfeln insgesamt 36 verschiedene Zahlenkombinationen gibt. | Es gibt somit insgesamt <math>6</math> verschiedene Ergebnisse für das Ereignis. Die einzelnen Ergebnisse haben alle eine Wahrscheinlichkeit von <math>\tfrac{1}{36}</math>, da es mit zwei Würfeln insgesamt <math>36</math> verschiedene Zahlenkombinationen gibt. | ||
Also folgt mit der Summenregel: P(E) = <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> = 6 | Also folgt mit der Summenregel: P(E) = <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> + <math>\tfrac{1}{36}</math> = <math>6 \cdot</math> <math>\tfrac{1}{36}</math> = <math>\tfrac{6}{36}</math> = <math>\tfrac{1}{6}</math>|2=Lösung b) |3=Lösung}} | ||
{{Lösung versteckt|1=Die Primzahlen, die mit zwei Würfeln erreicht werden können, sind die 2, 3, 5, 7 und 11. Es gibt 8 unterschiedliche Kombinationen von Zahlen, deren Summe eine dieser Primzahlen ist. Die 1+1, die 1+2, die 1+4, die 1+6, die 2+3, die 2+5, die 3+4 und die 5+6. Die einzelnen Kombinationen können jeweils in zwei unterschiedlichen Reihenfolgen geworfen werden, außer das 1er-Pasch. | {{Lösung versteckt|1=Die Primzahlen, die mit zwei Würfeln erreicht werden können, sind die <math>2, 3, 5, 7 und 11</math>. Es gibt <math>8</math> unterschiedliche Kombinationen von Zahlen, deren Summe eine dieser Primzahlen ist. Die 1+1, die 1+2, die 1+4, die 1+6, die 2+3, die 2+5, die 3+4 und die 5+6. Die einzelnen Kombinationen können jeweils in zwei unterschiedlichen Reihenfolgen geworfen werden, außer das 1er-Pasch. | ||
Das Ereignis ist also: E = { {1,1}; {1,2}; {2,1}; {1,4}; {4,1}; {1,6}; {6,1}; {2,3}; {3,2}; {2,5}; {5,2}; {3,4}; {4,3}; {5,6}; {6,5} } | Das Ereignis ist also: E = { {1,1}; {1,2}; {2,1}; {1,4}; {4,1}; {1,6}; {6,1}; {2,3}; {3,2}; {2,5}; {5,2}; {3,4}; {4,3}; {5,6}; {6,5} } | ||
Es gibt somit insgesamt 15 verschiedene Ergebnisse für das Ereignis. Die einzelnen Ergebnisse haben alle eine Wahrscheinlichkeit von <math>\tfrac{1}{36}</math>, da es mit zwei Würfeln insgesamt 36 verschiedene Zahlenkombinationen gibt. | Es gibt somit insgesamt <math>15</math> verschiedene Ergebnisse für das Ereignis. Die einzelnen Ergebnisse haben alle eine Wahrscheinlichkeit von <math>\tfrac{1}{36}</math>, da es mit zwei Würfeln insgesamt <math>36</math> verschiedene Zahlenkombinationen gibt. | ||
Also folgt mit der Summenregel: P(E) = 15 | Also folgt mit der Summenregel: P(E) = <math>15 \cdot</math> <math>\tfrac{1}{36}</math> = <math>\tfrac{15}{36}</math>|2=Lösung c) |3=Lösung}} | ||
| Arbeitsmethode }} | | Arbeitsmethode }} | ||
Version vom 29. November 2020, 11:55 Uhr
Absolute und relative Häufigkeit
Zufallsexperimente
Laplace-Experimente