Digitale Werkzeuge in der Schule/Fit für VERA-8/Terme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 271: | Zeile 271: | ||
{{Lösung versteckt|1= Zunächst beginnt man mit dem Ausgangsterm <div align="center"><math>({\color{green}a}+{\color{blue}b})^2</math></div> <br /> Nun wird die Potenz ausgeschrieben <div align="center"> <math>=({\color{green}a}+{\color{blue}b})\cdot({\color{green}a}+{\color{blue}b})</math> </div> <br /> Als nächstes werden die Klammern ausmultipliziert <div align="center"> <math>={\color{green}a}{\color{green}a}+{\color{green}a}{\color{blue}b}+{\color{blue}b}{\color{green}a}+{\color{blue}b}{\color{blue}b}</math> </div> <br /> Das Kommutativgesetz (Vertauschungsgesetz) liefert das Ergebnis: <div align="center"> <math>={\color{green}a}^2+2{\color{green}a}{\color{blue}b}+{\color{blue}b}^2</math> </div>|2=Lösung|3=Lösung ausblenden}} | {{Lösung versteckt|1= Zunächst beginnt man mit dem Ausgangsterm <div align="center"><math>({\color{green}a}+{\color{blue}b})^2</math></div> <br /> Nun wird die Potenz ausgeschrieben <div align="center"> <math>=({\color{green}a}+{\color{blue}b})\cdot({\color{green}a}+{\color{blue}b})</math> </div> <br /> Als nächstes werden die Klammern ausmultipliziert <div align="center"> <math>={\color{green}a}{\color{green}a}+{\color{green}a}{\color{blue}b}+{\color{blue}b}{\color{green}a}+{\color{blue}b}{\color{blue}b}</math> </div> <br /> Das Kommutativgesetz (Vertauschungsgesetz) liefert das Ergebnis: <div align="center"> <math>={\color{green}a}^2+2{\color{green}a}{\color{blue}b}+{\color{blue}b}^2</math> </div>|2=Lösung|3=Lösung ausblenden}} | ||
{{Lösung versteckt|1=<math>({\color{green}(2x)}+{\color{blue}z})^2 = {\color{green}(2x)}^2+2{\color{green}(2x)}{\color{blue}z}+{\color{blue}z}^2 = 2^2x^2+2 \cdot 2xz+z^2 = 4x^2+4xz+z^2</math> |2=Anwendungsbeispiel der ersten binomischen Formel|3=Beispiel ausblenden}}| 3=Merksatz}} | {{Lösung versteckt|1=<math>({\color{green}(2x)}+{\color{blue}z})^2 = {\color{green}(2x)}^2+2{\color{green}(2x)}{\color{blue}z}+{\color{blue}z}^2 = 2^2x^2+2 \cdot 2xz+z^2 = 4x^2+4xz+z^2</math> |2=Anwendungsbeispiel der ersten binomischen Formel|3=Beispiel ausblenden}}| 3=Merksatz}} | ||
{{Box|1=geometrische Herleitung|2=Neben der rechnerischen Lösung gibt es noch eine anschaulichere Möglichkeit, die binomischen Formeln herzuleiten. Dies gelingt über das Vergleichen von Flächen. Ziehe in der unteren Grafik die Punkte an den Balken nach rechts oder links, um die Werte von a und b zu verändern. Beobachte, was das Vergrößern bzw. Verkleinern dieser Werte geometrisch und rechnerisch bewirkt. | {{Box|1=geometrische Herleitung|2=Neben der rechnerischen Lösung gibt es noch eine ''anschaulichere Möglichkeit'', die binomischen Formeln herzuleiten. Dies gelingt über das '''Vergleichen von Flächen'''. Ziehe in der unteren Grafik die Punkte an den Balken nach rechts oder links, um die Werte von a und b zu verändern. Beobachte, was das Vergrößern bzw. Verkleinern dieser Werte '''geometrisch''' und '''rechnerisch''' bewirkt. | ||
<ggb_applet id="WEEdZyfV" width="1000" height="550" border="888888" /> | <ggb_applet id="WEEdZyfV" width="1000" height="550" border="888888" /> | ||
Der Flächeninhalt des großen Quadrats ist <math>(a+b)^2 </math> und damit gleich dem Ergebnis der 1. binomischen Formel. An der Zeichnung sieht man, dass sich das Quadrat aus vier Teilflächen zusammensetzt. Diese haben die Flächeninhalte <math>a^2, a \cdot b, b \cdot a, b^2 </math>. Die Fläche des Quadrats ergibt sich als Summe der Teilflächen: <math>a^2+ 2ab+ b^2 </math> Das ist gerade die 1. binomischen Formel. | Der Flächeninhalt des großen Quadrats ist <math>(a+b)^2 </math> und damit gleich dem Ergebnis der 1. binomischen Formel. An der Zeichnung sieht man, dass sich das Quadrat aus '''vier Teilflächen''' zusammensetzt. Diese haben die Flächeninhalte <math>a^2, a \cdot b, b \cdot a, b^2 </math>. Die Fläche des Quadrats ergibt sich als '''Summe der Teilflächen''': <math>a^2+ 2ab+ b^2 </math> Das ist gerade die '''1. binomischen Formel'''. | ||
|3=Merksatz}} | |3=Merksatz}} | ||
{{Box|1=Beachte|2=Bisher hast du lediglich die Herleitung der ersten binomischen Formel kennengelernt. Die Herleitungen der zweiten und dritten binomischen Formel erfolgen sehr ähnlich und werden hier nicht thematisiert. Falls du dich trotzdem dafür interessierst, schau doch gerne mal bei Serlo vorbei: | {{Box|1=Beachte|2=Bisher hast du lediglich die Herleitung der ersten binomischen Formel kennengelernt. Die Herleitungen der zweiten und dritten binomischen Formel erfolgen sehr ähnlich und werden hier nicht thematisiert. Falls du dich trotzdem dafür interessierst, schau doch gerne mal bei Serlo vorbei: | ||
Zeile 291: | Zeile 291: | ||
Zur Erinnerung: <div align="center">'''2. binomische Formel:''' <math>({\color{green}a}-{\color{blue}b})^2 = {\color{green}a}^2-2{\color{green}a}{\color{blue}b}+{\color{blue}b}^2 </math> </div> <br /> <br /> | Zur Erinnerung: <div align="center">'''2. binomische Formel:''' <math>({\color{green}a}-{\color{blue}b})^2 = {\color{green}a}^2-2{\color{green}a}{\color{blue}b}+{\color{blue}b}^2 </math> </div> <br /> <br /> | ||
a)<math>({\color{green}5x}-{\color{blue}3y})^2 = {\color{green}(5x)}^2-2{\color{green}(5x)}{\color{blue}(3y)}+{\color{blue}(3y)}^2 = 25x^2+30xy+9y^2</math> <br \> <br \> | a)<math>({\color{green}5x}-{\color{blue}3y})^2 = {\color{green}(5x)}^2-2{\color{green}(5x)}{\color{blue}(3y)}+{\color{blue}(3y)}^2 = 25x^2+30xy+9y^2</math> <br \> <br \> | ||
Die Reihenfolge der Variablen in der Klammer kann manchmal verkehrt herum sein. In diesem Fall wird zunächst das Kommutativgesetz verwendet, bevor die binomische Formel angewendet wird: <br /> | Die Reihenfolge der Variablen in der Klammer kann manchmal verkehrt herum sein. In diesem Fall wird zunächst das Kommutativgesetz verwendet, <u>bevor</u> die binomische Formel angewendet wird: <br /> | ||
b)<math>(-{\color{blue}2}+{\color{green}w})^2 = ({\color{green}w}-{\color{blue}2})^2 = {\color{green}w}^2-2{\color{green}w}{\color{blue}(2)}+{\color{blue}2}^2 = w^2-4w+4</math> <br \> <br \> | b)<math>(-{\color{blue}2}+{\color{green}w})^2 = ({\color{green}w}-{\color{blue}2})^2 = {\color{green}w}^2-2{\color{green}w}{\color{blue}(2)}+{\color{blue}2}^2 = w^2-4w+4</math> <br \> <br \> | ||
c)<math>({\color{green}ab}-{\color{blue}4t})^2 = {\color{green}(ab)}^2-2{\color{green}(ab)}{\color{blue}(4t)}+{\color{blue}(4t)}^2 = a^2b^2-2(ab)(4t)+4^2t^2 = a^2b^2-8abt+16t^2</math> <br \>|2=Beispiele zur 2. binomischen Formel|3=Beispiele ausblenden}} | c)<math>({\color{green}ab}-{\color{blue}4t})^2 = {\color{green}(ab)}^2-2{\color{green}(ab)}{\color{blue}(4t)}+{\color{blue}(4t)}^2 = a^2b^2-2(ab)(4t)+4^2t^2 = a^2b^2-8abt+16t^2</math> <br \>|2=Beispiele zur 2. binomischen Formel|3=Beispiele ausblenden}} | ||
Zeile 297: | Zeile 297: | ||
Zur Erinnerung: <div align="center">'''3. binomische Formel:''' <math>({\color{green}a}+{\color{blue}b})({\color{green}a}-{\color{blue}b}) = {\color{green}a}^2-{\color{blue}b}^2 </math> </div> <br /> <br /> | Zur Erinnerung: <div align="center">'''3. binomische Formel:''' <math>({\color{green}a}+{\color{blue}b})({\color{green}a}-{\color{blue}b}) = {\color{green}a}^2-{\color{blue}b}^2 </math> </div> <br /> <br /> | ||
a) <math>({\color{green}(2h)}+{\color{blue}i})({\color{green}(2h)}-{\color{blue}i}) = {\color{green}(2h)}^2-{\color{blue}i}^2 </math> <br /> <br /> | a) <math>({\color{green}(2h)}+{\color{blue}i})({\color{green}(2h)}-{\color{blue}i}) = {\color{green}(2h)}^2-{\color{blue}i}^2 </math> <br /> <br /> | ||
Es spielt keine Rolle, | Es spielt keine Rolle, ob zuerst die ''Summe'' oder die ''Differenz'' erscheint (Assoziativgesetz): <br /> | ||
b) <math>({\color{green}(mn)}-{\color{blue}{1\over 3}})({\color{green}(mn)}+{\color{blue}{1\over 3}}) = {\color{green}(mn)}^2-{\color{blue}({1\over 3})}^2 = m^2n^2-{1\over 9}</math> <br /> <br /> | b) <math>({\color{green}(mn)}-{\color{blue}{1\over 3}})({\color{green}(mn)}+{\color{blue}{1\over 3}}) = {\color{green}(mn)}^2-{\color{blue}({1\over 3})}^2 = m^2n^2-{1\over 9}</math> <br /> <br /> | ||
c) <math>({\color{green}(3x)}+{\color{blue}\sqrt{2}})({\color{green}(3x)}-{\color{blue}\sqrt{2}}) = {\color{green}(3x)}^2-{\color{blue}(\sqrt{2})}^2 = 9x^2-2 </math> <br /> <br /> | c) <math>({\color{green}(3x)}+{\color{blue}\sqrt{2}})({\color{green}(3x)}-{\color{blue}\sqrt{2}}) = {\color{green}(3x)}^2-{\color{blue}(\sqrt{2})}^2 = 9x^2-2 </math> <br /> <br /> | ||
Zeile 337: | Zeile 337: | ||
{{Lösung versteckt|1= Verwende bei der Umformung die dritte binomische Formel. |2=Tipp 2|3=Tipp verbergen}} | {{Lösung versteckt|1= Verwende bei der Umformung die dritte binomische Formel. |2=Tipp 2|3=Tipp verbergen}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zunächst wird die 3. binomische Formel ausgenutzt: <div align="center"><math>a^2-b^2 = (a-b)(a+b)</math></div> <br /> Dann wird für <math> b = a-1 </math> eingesetzt: <div align="center"> <math>=a^2-b^2 = (a-b)(a+b)</math> </div> <br /> Nun die erste Klammer auflösen: <div align="center"> <math> | Zunächst wird die 3. binomische Formel ausgenutzt: <div align="center"><math>a^2-b^2 = (a-b)(a+b)</math></div> <br /> Dann wird für <math> b = a-1 </math> eingesetzt: <div align="center"> <math>=a^2-b^2 = (a-b)(a+b)</math> </div> <br /> Nun die erste Klammer auflösen: <div align="center"> <math>= (a-(a-1))(a+(a-1)) = 1 \cdot (a+(a-1))</math> </div> <br /> Das Schließlich für <math> a-1 = b </math> einsetzen: <div align="center"> <math>= 1 \cdot (a+(b)) = a+b </math> </div> | ||
<br /> | <br /> | ||
Version vom 20. November 2020, 19:05 Uhr
1) Terme zusammenfassen
Einführung
Wie kann ich Terme zusammenfassen?
Aufgabenteil
2) Terme ausmultiplizieren und faktorisieren
Terme ausmultiplizieren
Aufgabe
Terme faktorisieren
Aufgabe
Weitere Aufgabenzum Ausmultiplizieren und Faktorisieren
3) Binomische Formeln
Einführung
Was sind die binomischen Formeln?
Herleitung der binomischen Formeln
Beispiele
Aufgabenteil
1. binomische Formel | |||
2. binomische Formel | |||
3. binomische Formel | |||
Das ist keine binomische Formel |
a)15()a()
b)3a()4b()3a()4b())
c)9u()2()
d)2m()7()
e)8y()10z()
f)6u()17w()6u()17w())