Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 209: | Zeile 209: | ||
* zehnte Sekunde nach der Explosion | * zehnte Sekunde nach der Explosion | ||
{{Lösung versteckt|1 = Hier ist nach der momentanen Geschwindigkeit gefragt, | {{Lösung versteckt|1 = Hier ist nach der momentanen Geschwindigkeit gefragt. Stelle dir also die Frage, ob es um die durchschnittliche oder lokale Änderungsrate der Funktion geht. Vergleiche mit dem Teil a). Die entsprechende Berechnungsformeln findest du in Merkkästen am Anfang des Kapitels.|2=Tipp|3=Tipp}} | ||
{{Lösung versteckt|1 = Wird nach der Geschwindigkeit zu einem Zeitpunkt bei einer Weg-Zeit-Funktion gefragt, so handelt es sich um die lokale Änderungsrate | {{Lösung versteckt|1 = Wird nach der Geschwindigkeit zu einem Zeitpunkt bei einer Weg-Zeit-Funktion gefragt, so handelt es sich um die lokale Änderungsrate. Der Differntialquotient ist also geeignet. | ||
Für die Geschwindigkeit in der zweiten Sekunde rechnest Du also: | Für die Geschwindigkeit in der zweiten Sekunde rechnest Du also: | ||
<math>R'(2)=\lim_{h \to \ 0}\frac{R(2+h)-R(2)}{h}</math> <math>=\lim_{h \to \ 0} \frac{1,6 (2+h)^2+3,2\cdot(2+h)-1,6\cdot4-3,2\cdot2}{h} =\lim_{h \to \ 0} (6,4 + 1,6h +3,2) = 8,6</math> km/ | <math>R'(2)=\lim_{h \to \ 0}\frac{R(2+h)-R(2)}{h}</math> <math>=\lim_{h \to \ 0} \frac{1,6 (2+h)^2+3,2\cdot(2+h)-1,6\cdot4-3,2\cdot2}{h} =\lim_{h \to \ 0} (6,4 + 1,6h +3,2) = 8,6</math> <math> \frac{km}{s} </math>. | ||
Die momentane Ausbreitungsgeschwindigkeit in der Sekunde 10 beträgt bereits | Die momentane Ausbreitungsgeschwindigkeit in der Sekunde 10 beträgt bereits <math> 35,2 \frac{km}{s} </math>. | ||
|2=Lösung|3=Lösung}} | |2=Lösung|3=Lösung}} | ||
Zeile 223: | Zeile 223: | ||
{{LearningApp|app=10938377|width=100%|height=600px}} | {{LearningApp|app=10938377|width=100%|height=600px}} | ||
{{Lösung versteckt|1= Überlege zuerst welche Begriffe | {{Lösung versteckt|1= Überlege zuerst, welche Begriffe dem <math>x</math>-Wert und dem <math><</math>-Wert zuzuordnen sind. Was hängt also wie von einander ab? | ||
Zum Beispiel hängt die zurückgelegte Strecke von der Fahrzeit ab. Damit kann schon einmal die Funktion beschrieben werden. Die Formeln für durchschnittliche und momentane (lokale) Änderungsraten findest du in den Merkkästen. |2=Tipp|3=Tipp}} | |||
|3= Arbeitsmethode}} | |3= Arbeitsmethode}} | ||
Version vom 12. Juni 2020, 06:39 Uhr
Grundlegende Begriffe und Formeln
Aufgaben zum Wiederholen und Vertiefen
Mittelschwere Aufgaben
Knobelaufgaben