Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Extrema: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Basiswissen Analysis | Eigenschaften von Funktionen und Funktionsuntersuchung
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 83: | Zeile 83: | ||
;Hinreichendes Kriterium: <math> f'(x_E) = 0 </math> & <math> f''(x_E) < 0</math> oder <math> f''(x_E) > 0</math>, mit <math> f''(x) = 6x - 6</math>. | ;Hinreichendes Kriterium: <math> f'(x_E) = 0 </math> & <math> f''(x_E) < 0</math> oder <math> f''(x_E) > 0</math>, mit <math> f''(x) = 6x - 6</math>. | ||
:Wir erhalten durch einsetzen: | :Wir erhalten durch einsetzen: | ||
:<math>f' | :<math>f'\Big(-0{,}63\Big) = 0</math> & <math>f''\Big(-0{,}63\Big) = -9{,}78 < 0 \Rightarrow</math> Es handelt sich um einen Hochpunkt bei <math>x = -0{,}63.</math> | ||
:<math>f' | :<math>f'\Big(2{,}63\Big) = 0</math> & <math>f''\Big(2{,}63\Big) = +1{,} > 0 \Rightarrow</math> Es handelt sich um einen Tiefpunkt bei <math>x = 2{,}63.</math> | ||
;Ordinate bestimmen: <br> | ;Ordinate bestimmen: <br> | ||
:Wir setzen unsere Extremstelle in die Ursprungsfunktion ein f(x) =3: | :Wir setzen unsere Extremstelle in die Ursprungsfunktion ein f(x) =3: | ||
Zeile 107: | Zeile 107: | ||
:<math>\;\;\;\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x^{2} = \frac{9}{25}a^{2}\;|\sqrt{(...)}</math> | :<math>\;\;\;\,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x^{2} = \frac{9}{25}a^{2}\;|\sqrt{(...)}</math> | ||
.<math> \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_{1} = x_{2} = 0, x_{3} = -\frac{3}{5}a,</math> und <math> x_{4} = \frac{3}{5}a</math> | .<math> \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\Rightarrow x_{1} = x_{2} = 0, x_{3} = -\frac{3}{5}a,</math> und <math> x_{4} = \frac{3}{5}a</math> | ||
;Hinreichendes Kriterium: <math> h_{a}''(x_E) < 0</math> oder <math> h_{a}''(x_E) > 0</math>, mit <math> h_{a}''(x) = 100x^{3} - 18a^{2}x</math>. | ;Hinreichendes Kriterium: <math> h_{a}'(x_E) = 0 </math> &<math> h_{a}''(x_E) < 0</math> oder <math> h_{a}''(x_E) > 0</math>, mit <math> h_{a}''(x) = 100x^{3} - 18a^{2}x</math>. | ||
:Wir erhalten durch einsetzen: | :Wir erhalten durch einsetzen: | ||
:<math>h_{a}''\Big(-\frac{3}{5}a\Big) = -21{,}6a^{3} + 10{,}8a^{3} = -10{,}8a^{3} < 0</math>, da <math>a > 0</math> kann sich das Vorzeichen nicht ändern. Also bleibt der Wert weiterhin negativ.<math>\Rightarrow</math> Es handelt sich um einen Hochpunkt bei <math>x = -\frac{3}{5}a.</math><br> | :<math>h_{a}'\Big(-\frac{3}{5}a\Big) = 0</math> &<math>h_{a}''\Big(-\frac{3}{5}a\Big) = -21{,}6a^{3} + 10{,}8a^{3} = -10{,}8a^{3} < 0</math>, da <math>a > 0</math> kann sich das Vorzeichen nicht ändern. Also bleibt der Wert weiterhin negativ.<math>\Rightarrow</math> Es handelt sich um einen Hochpunkt bei <math>x = -\frac{3}{5}a.</math><br> | ||
:<math>h_{a}''(0) = 0 \Rightarrow</math> Es handelt sich um einen möglichen Sattelpunkt bei <math>x = 0.</math> Dies muss überprüft werden!<br> | :<math>h_{a}'(0) = 0</math> & <math>h_{a}''(0) = 0 \Rightarrow</math> Es handelt sich um einen möglichen Sattelpunkt bei <math>x = 0.</math> Dies muss überprüft werden!<br> | ||
:<math>h_{a}''\Big(\frac{3}{5}a\Big) = 21{,}6a^{3} - 10{,}8a^{3} = 10{,}8a^{3}> 0 </math>, da <math>a > 0</math> kann sich das Vorzeichen nicht ändern. Also bleibt der Wert weiterhin positiv.<math>\Rightarrow</math> Es handelt sich um einen Tiefpunkt bei <math>x = \frac{3}{5}.</math><br> | :<math>h_{a}'\Big(\frac{3}{5}a\Big) = 0</math> &<math>h_{a}''\Big(\frac{3}{5}a\Big) = 21{,}6a^{3} - 10{,}8a^{3} = 10{,}8a^{3}> 0 </math>, da <math>a > 0</math> kann sich das Vorzeichen nicht ändern. Also bleibt der Wert weiterhin positiv.<math>\Rightarrow</math> Es handelt sich um einen Tiefpunkt bei <math>x = \frac{3}{5}.</math><br> | ||
: '''Achtung:''' Ob es sich um eine Sattelstelle bei <math>x = 0</math> handelt, wird durch die dritte Ableitung überprüft, indem wir zeigen, dass <math>h_{a}'''(0) \neq 0</math> stimmt. Es gilt <math>h_{a}'''(x) = 300x^{2} - 18a^{2}</math><br> | : '''Achtung:''' Ob es sich um eine Sattelstelle bei <math>x = 0</math> handelt, wird durch die dritte Ableitung überprüft, indem wir zeigen, dass <math>h_{a}'''(0) \neq 0</math> stimmt. Es gilt <math>h_{a}'''(x) = 300x^{2} - 18a^{2}</math><br> | ||
:<math>h_{a}'''(0) = -18a^{2} \neq 0 \Rightarrow</math> Es liegt ein Sattelpunkt vor. | :<math>h_{a}'''(0) = -18a^{2} \neq 0 \Rightarrow</math> Es liegt ein Sattelpunkt vor. |