Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Extrema: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Basiswissen Analysis | Eigenschaften von Funktionen und Funktionsuntersuchung
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 21: | Zeile 21: | ||
Das Vorgehen setzt sich aus zwei Teilen zusammen, das für jede Funktion <math> f(x)</math> gilt: | Das Vorgehen setzt sich aus zwei Teilen zusammen, das für jede Funktion <math> f(x)</math> gilt: | ||
:'''Notwendiges Kriterium:''' Bei einem möglichem Extremum beträgt die Steigung 0, da sich in diesem Punkt das Steigungsverhalten der Funktion <math>f</math> ändert. Vor einem Hochpunkt beispielsweise steigt die Funktion und direkt nach dem Hochpunkt fällt sie. Im Folgenden wird | :'''Notwendiges Kriterium:''' Bei einem möglichem Extremum beträgt die Steigung 0, da sich in diesem Punkt das Steigungsverhalten der Funktion <math>f</math> ändert. Vor einem Hochpunkt beispielsweise steigt die Funktion und direkt nach dem Hochpunkt fällt sie. Im Folgenden wird diese Stelle als <math> x_E</math> bezeichnet. Daher gilt: '''<math> f'(x_E) = 0</math>'''. <br> | ||
:'''Hinreichendes Kriterium:''' Die potentiellen Extremstellen werden in <math> f''(x)</math> eingesetzt. Achte darauf, dass dabei zwei Möglichkeiten entstehen. Für <math> f''(x_E)</math> kann folgen: | :'''Hinreichendes Kriterium:''' Die potentiellen Extremstellen werden in <math> f''(x)</math> eingesetzt. Achte darauf, dass dabei zwei Möglichkeiten entstehen. Für <math> f''(x_E)</math> kann folgen: | ||
Zeile 28: | Zeile 28: | ||
:'''Hinweis:''' Alternativ kannst du das hinreichende Kriterium überprüfen, indem du überprüfst, ob ein Vorzeichenwechsel vor und hinter einem Extrema vorliegt. | :'''Hinweis:''' Alternativ kannst du das hinreichende Kriterium überprüfen, indem du überprüfst, ob ein Vorzeichenwechsel vor und hinter einem Extrema vorliegt. | ||
:'''Ordinate bestimmen:''' Zu jeder Stelle existiert eine passende Ordinate. Dazu setzt du <math>x_E</math> in <math>f(x)</math> ein. Zusammenfassend | :'''Ordinate bestimmen:''' Zu jeder Stelle existiert eine passende Ordinate. Dazu setzt du <math>x_E</math> in <math>f(x)</math> ein. Zusammenfassend erhältst du alle Extrempunkte der Form <math>E(x_E|f(x_E))</math>. | ||
'''Achtung:''' Im hinreichenden Kriterium besteht die Möglichkeit folgendes Ergebnis zu erhalten: '''<math>f''(x_E) = 0</math>'''. Dabei kann es sich um eine sogenannte '''Sattelstelle''' handeln. Diese Sattelstelle stellt einen besonderen Fall eines Wendepunkts dar. Die zu erfüllenden Kriterien für eine Sattelstelle kannst du aus der unten abgebildeten Tabelle entnehmen. <br> | '''Achtung:''' Im hinreichenden Kriterium besteht die Möglichkeit folgendes Ergebnis zu erhalten: '''<math>f''(x_E) = 0</math>'''. Dabei kann es sich um eine sogenannte '''Sattelstelle''' handeln. Diese Sattelstelle stellt einen besonderen Fall eines Wendepunkts dar. Die zu erfüllenden Kriterien für eine Sattelstelle kannst du aus der unten abgebildeten Tabelle entnehmen. <br> | ||
Die folgende Übersicht soll dir dabei helfen, die Kriterien der verschiedenen | Die folgende Übersicht soll dir dabei helfen, die Kriterien der verschiedenen Extrempunkte besser merken zu können: | ||
[[Datei:ÜbersichtExtrema.png|zentriert|rahmenlos|1000x1000px]] | [[Datei:ÜbersichtExtrema.png|zentriert|rahmenlos|1000x1000px]] | ||
| Merksatz}} | | Merksatz}} |