Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Extrema: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Basiswissen Analysis | Eigenschaften von Funktionen und Funktionsuntersuchung
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Box| Wissen: Extremstellenbestimmung von Funktionen | | {{Box| Wissen: Extremstellenbestimmung von Funktionen | | ||
Eine Funktion <math> f</math>, die in einem Intervall streng monoton wächst und im darauf folgenden Intervall streng monoton fällt, | Eine Funktion <math> f</math>, die in einem Intervall streng monoton wächst und im darauf folgenden Intervall streng monoton fällt, besitzt einen Punkt, an dem die Funktion weder steigt noch fällt. Dieser Punkt wird als Maximum beziehungsweise Minimum bezeichnet, allgemein als Extremum. | ||
Extrema werden bei einer Funktionsuntersuchung weitergehend darin unterschieden, ob es sich dabei um ein '''globales''' oder '''lokales''' Extremum handelt. Wichtig ist es dabei, dass du dein Intervall berücksichtigst.<br> | Extrema werden bei einer Funktionsuntersuchung weitergehend darin unterschieden, ob es sich dabei um ein '''globales''' oder '''lokales''' Extremum handelt. Wichtig ist es dabei, dass du dein Intervall berücksichtigst.<br> | ||
Zeile 21: | Zeile 21: | ||
Das Vorgehen setzt sich aus zwei Teilen zusammen, das für jede Funktion <math> f(x)</math> gilt: | Das Vorgehen setzt sich aus zwei Teilen zusammen, das für jede Funktion <math> f(x)</math> gilt: | ||
:'''Notwendiges Kriterium:''' | :'''Notwendiges Kriterium:''' Bei einem möglichem Extremum beträgt die Steigung 0, da sich in diesem Punkt das Steigungsverhalten der Funktion <math>f</math> ändert. Vor einem Hochpunkt beispielsweise steigt die Funktion und direkt nach dem Hochpunkt fällt sie. Im Folgenden wird dieser Punkt als <math> x_E</math> bezeichnet. Daher gilt: '''<math> f'(x_E) = 0</math>'''. <br> | ||
:'''Hinreichendes Kriterium:''' Die potentiellen Extremstellen werden in <math> f''(x)</math> eingesetzt. | :'''Hinreichendes Kriterium:''' Die potentiellen Extremstellen werden in <math> f''(x)</math> eingesetzt. Achte darauf, dass dabei zwei Möglichkeiten entstehen. Für <math> f''(x_E)</math> kann folgen: | ||
::* <math>f''(x_E) < 0 \Rightarrow</math> Es liegt ein '''Hochpunkt''' vor. | ::* <math>f''(x_E) < 0 \Rightarrow</math> Es liegt ein '''Hochpunkt''' vor. | ||
::* <math>f''(x_E) > 0 \Rightarrow</math> Es liegt ein '''Tiefpunkt''' vor. | ::* <math>f''(x_E) > 0 \Rightarrow</math> Es liegt ein '''Tiefpunkt''' vor. | ||
:'''Ordinate bestimmen:''' Zu jeder Koordinate | |||
:'''Hinweis:''' Alternativ kannst du das hinreichende Kriterium überprüfen, indem du überprüfst, ob ein Vorzeichenwechsel vor und hinter einem Extrema vorliegt. | |||
:'''Ordinate bestimmen:''' Zu jeder Koordinate existiert eine passende Ordinate. Dazu setzt du <math>x_E</math> in <math>f(x)</math> ein. Zusammenfassend erhälst du alle Extremstellen der Form <math>E(x_E/f(x_E))</math>. | |||
'''Achtung:''' Im hinreichenden Kriterium besteht die Möglichkeit folgendes Ergebnis zu erhalten: '''<math>f''(x_E) = 0</math>'''. Dabei kann es sich um eine sogenannte '''Sattelstelle''' handeln. Diese Sattelstelle stellt einen besonderen Fall eines Extremums dar. Die zu erfüllenden Kriterien für eine Sattelstelle kannst du aus der unten abgebildeten Tabelle entnehmen. <br> | '''Achtung:''' Im hinreichenden Kriterium besteht die Möglichkeit folgendes Ergebnis zu erhalten: '''<math>f''(x_E) = 0</math>'''. Dabei kann es sich um eine sogenannte '''Sattelstelle''' handeln. Diese Sattelstelle stellt einen besonderen Fall eines Extremums dar. Die zu erfüllenden Kriterien für eine Sattelstelle kannst du aus der unten abgebildeten Tabelle entnehmen. <br> |