Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Monotonie: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 87: Zeile 87:


Mithilfe der errechneten Intervalle können wir nun die Monotonietabelle aufstellen:
Mithilfe der errechneten Intervalle können wir nun die Monotonietabelle aufstellen:
 
Hierfür gehe wie im Beispiel vor:
1. Stelle die Intervalle mithilfe deiner errechneten Nullstellen auf
2. Berechne mithilfe deines Taschesrechners die Vorzeichen für die Intervalle


[[Datei:BildAufgabe2.jpg|zentriert|rahmenlos|900x900px]]
[[Datei:BildAufgabe2.jpg|zentriert|rahmenlos|900x900px]]
Zeile 93: Zeile 95:




Antwort: Somit fließt Wasser steigt der Wasserspiegel bis zur Stunde 7,4 (seit Messung). Danach fließt es ca. bis zur 26. Stunde ab.
Antwort: Somit steigt der Wasserspiegel bis zur Stunde 7,4 (seit Messung). Danach fließt das Wasser ca. bis zur 26. Stunde ab. Anschließend steigt der Wasserspiegel wieder (beispielsweise durch einen erneuten Regenschauer) bis zum Ende des Messzeitraumes.





Version vom 14. Mai 2020, 10:02 Uhr

Merke

Das Monotonieverhalten einer Funktion beschreibt den Verlauf des Graphen einer Funktion. Die Monotonie gibt an, ob eine Funktion fällt, steigt oder konstant ist.


Sei eine Funktion und

-      Falls auf einem Intervall gilt, so ist die Funktion streng monoton steigend

-      Falls auf einem Intervall gilt, so ist die Funktion monoton steigend


-      Falls auf einem Intervall gilt, so ist die Funktion streng monoton fallend

-      Falls auf einem Intervall gilt, so ist die Funktion monoton fallend


Wie die einzelnen Eigenschaften am Graphen aussehen, kannst du hier nochmal in der Abbildung sehen!

MonotonieAbbildung.png


Aufgabe 1: Zuordnung von Begriffen zur Monotonie



So berechnest du das Monotonieverhalten einer Funktion

1. Erste Ableitung berechnen

2. Nullstellen der ersten Ableitung berechnen

3. Intervalle benennen

4. Monotonietabelle aufstellen

5. Vorzeichen der Intervalle berechnen (z.B. mit Taschenrechner)

6. Ergebnis interpretieren


Beispiel: Monotonieverhalten für bestimmen

Zuerst berechnen wir die Ableitung . Anschließend berechnen wir die Nullstellen der Ableitung () und erhalten durch Umformungen als Nullstelle . Damit sind die zu betrachtenden Intervalle für das Monotonieverhalten und . Darauffolgend berechnen wir die Vorzeichen für die Intervalle. Dies machen wir indem wir Werte für die Ableitung in den entsprechenden Intervallen ausrechnen. Zum Beispiel liegt im Intervall . Die entsprechenden Werte kannst du in einer Tabelle übersichtlich darstellen:

Beispiel x^2.jpg

(Legende: streng monoton steigend, streng monoton fallend)

Aus dem Ergebnis können wir schließen, dass die Funktion für streng monoton fallend und für streng monoton steigend ist.



Aufgabe 2: Regenschauer am Aasee
2004-09-07-Aasee Münster.jpg
Aasee Münster

Nach einem starken Regenschauer in Münster steigt der Wasserspiegel im Aasee an. Die Funktion beschreibt die Zuflussgeschwindigkeit in den ersten 48 Stunden ( Zeit in Stunden, Zuflussgeschwindigkeit in Liter pro Stunde). Wann fließt innerhalb dieser Zeit Wasser zu und wann Wasser ab?


Aufgabe 3: Der"SuperBounce"-Ball ⭐
SuperBounce-Ball

Die Firma "SuperBounce" hat einen speziellen Ball erfunden, der eine einzigartige Sprungbewegung beim Wurf auf dem Boden erzeugt. Die Funktion beschreibt annähernd die Flugbahn des Balles, wobei die Härte des Wurfes durch den Werfer beschreibt (horizontaler Verlauf des Balles in cm, Höhe des Balles in cm). Bestimme wann der Ball in Abhängikeit von nach oben springt und wann er fällt.



Aufgabe 4: Monotonieverhalten anhand der Ableitungsfunktion bestimmen

a) Auf dem Bild siehst du den Graphen einer Ableitungsfunktion . Welche Aussagen kannst du über das Monotonieverhalten von machen?


















b) Zeichne nun mithilfe deiner Ergebnisse aus a) den Funktionsgraphen mithilfe deiner Kenntnisse über sein Monotonieverhalten in dein Heft.