Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 65: | Zeile 65: | ||
{{Box|1=<span style="color: orange">1. Aufgabe. Schlittenfahrt</span>|2= TEXTTEXT | {{Box|1=<span style="color: orange">1. Aufgabe. Schlittenfahrt</span>|2= TEXTTEXT | ||
|3= Üben}} | |Farbe={{Farbe|orange}}|3= Üben}} | ||
{{Box|1= <span style="color: orange">2. Aufgabe: Bestimme die durchschnittliche Änderungsrate auf dem vorgegebenen Intervall</span>|2= Du benötigst für die Aufgabe Papier, Stifte und evtl. einen Taschenrechner. | {{Box|1= <span style="color: orange">2. Aufgabe: Bestimme die durchschnittliche Änderungsrate auf dem vorgegebenen Intervall</span>|2= Du benötigst für die Aufgabe Papier, Stifte und evtl. einen Taschenrechner. | ||
Zeile 82: | Zeile 82: | ||
'''d)''' Gegeben ist die Funktion <math>k(x) = \tfrac{1}{4}x^2</math> auf dem Intervall [1,99; 2,01] Überlege, was hier aus dem Differenzenquotient wird? | '''d)''' Gegeben ist die Funktion <math>k(x) = \tfrac{1}{4}x^2</math> auf dem Intervall [1,99; 2,01] Überlege, was hier aus dem Differenzenquotient wird? | ||
{{Lösung versteckt|1 = Die durchschnittliche Änderung auf dem Intervall beträgt 1. Wie komme ich zu meiner Lösung? Setze die Werte wie folgt in die Formel ein: <math>\frac{k(x) - k(\tilde{x})}{x-\tilde{x}} = \frac{k(2,01) - k(1,99)}{2,01-1,99} = \frac{1,010025-0,990025}{2,01-1,99} = 0,02:0,02 = 1</math>. Da das Intervall sehr klein ist, nähert sich der Differenzenquotient dem Differentialquotient.|2=Lösung|3=Lösung}} | {{Lösung versteckt|1 = Die durchschnittliche Änderung auf dem Intervall beträgt 1. Wie komme ich zu meiner Lösung? Setze die Werte wie folgt in die Formel ein: <math>\frac{k(x) - k(\tilde{x})}{x-\tilde{x}} = \frac{k(2,01) - k(1,99)}{2,01-1,99} = \frac{1,010025-0,990025}{2,01-1,99} = 0,02:0,02 = 1</math>. Da das Intervall sehr klein ist, nähert sich der Differenzenquotient dem Differentialquotient.|2=Lösung|3=Lösung}} |Farbe= {{Farbe|orange}} | ||
|3= Üben}} | |3= Üben}} | ||
Zeile 100: | Zeile 100: | ||
<ggb_applet id="KMv29tYV" width="800" height="580" border="888888" /> | <ggb_applet id="KMv29tYV" width="800" height="580" border="888888" /> | ||
{{Lösung versteckt|1 = 'Die Steigung der Tangenten beider Funktionen beträgt im Punkt A m=0,6. Die notierten Werte der durchschnittlichen Änderungsraten nähern sich dieser Zahl an, wenn das Intervall Δx sich der Zahl 0 nähert. Das entspricht genau der Definition der Tangente als Grenzwert der Sekantensteigungen. Der gleiche Wert für die zweite Funktion sollte auch nicht überraschen, denn diese ist die gleiche Funktion, lediglich um 1 nach unten verschoben. |2=Lösung|3=Lösung}} | {{Lösung versteckt|1 = 'Die Steigung der Tangenten beider Funktionen beträgt im Punkt A m=0,6. Die notierten Werte der durchschnittlichen Änderungsraten nähern sich dieser Zahl an, wenn das Intervall Δx sich der Zahl 0 nähert. Das entspricht genau der Definition der Tangente als Grenzwert der Sekantensteigungen. Der gleiche Wert für die zweite Funktion sollte auch nicht überraschen, denn diese ist die gleiche Funktion, lediglich um 1 nach unten verschoben. |2=Lösung|3=Lösung}} |Farbe= {{Farbe|orange}} | ||
|3= Üben}} | |3= Üben}} | ||
Zeile 109: | Zeile 109: | ||
a) Ordne die Begriffe und Abbildungen richtig zu, in dem Du die auf das rechte oder linke Feld ziehst. {{LearningApp|app=10636537}} | a) Ordne die Begriffe und Abbildungen richtig zu, in dem Du die auf das rechte oder linke Feld ziehst. {{LearningApp|app=10636537}} | ||
b) Erstelle in Deinem Heft ein MindMap zu dem Thema des Lernpfades. Nutze dafür die Begriffe und Darstellungen aus dem Teil a) dieser Aufgabe|3= Üben}} | b) Erstelle in Deinem Heft ein MindMap zu dem Thema des Lernpfades. Nutze dafür die Begriffe und Darstellungen aus dem Teil a) dieser Aufgabe |Farbe={{Farbe|blau|dunkel}}|3= Üben}} | ||
{{Box|1= <span style="color: blue">5. Aufgabe: Bestimme zeichnerisch und rechnerisch die lokale Änderungsrate im vorgegebenen Punkt</span>|2= Du benötigst für die Aufgabe kariertes Papier, Stifte, Lineal und evtl. einen Taschenrechner. | {{Box|1= <span style="color: blue">5. Aufgabe: Bestimme zeichnerisch und rechnerisch die lokale Änderungsrate im vorgegebenen Punkt</span>|2= Du benötigst für die Aufgabe kariertes Papier, Stifte, Lineal und evtl. einen Taschenrechner. |
Version vom 17. April 2020, 15:40 Uhr
Allgemeine Hinweise zur Bearbeitung
Grundlegende Begriffe und Formeln
Aufgaben zum wiederholen und anwenden
Aufgaben zum üben und vertiefen