Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung |
||
Zeile 190: | Zeile 190: | ||
{{Lösung versteckt|1 = [[Datei:Tabelle Loesung.png|550 px|zentriert|rahmenlos|mini]]|2=Lösung|3=Lösung}} | {{Lösung versteckt|1 = [[Datei:Tabelle Loesung.png|550 px|zentriert|rahmenlos|mini]]|2=Lösung|3=Lösung}} | ||
Version vom 15. April 2020, 20:55 Uhr
Inhaltsverzeichnis
Allgemeine Hinweise zur Bearbeitung
Dieser Lernpfad bietet Dir einen Einstieg in das Thema Differenzialrechnung. Zuerst erklären wir Dir wichtige Begriffe und Zusammenhänge. Danach kannst Du selbständig die Aufgaben bearbeiten. Du benötigst Papier und Stifte, Lineal und Taschenrechner. Die Aufgaben haben 3 unterschiedliche Schwierigkeitsstufen, die farblich gekennzeichnet sind:
- Schwierigkeitsstufe I mit gelben Titel: leichte Verständnis- und Rechenaufgaben zum Einstieg
- Schwierigkeitsstufe II mit blauen Titel: normale, mittelschwere Aufgaben zum üben und vertiefen.
- Schwierigkeitsstufe III mit grünen Titel: herausfordernde Aufgaben
Viel Erfolg!Grundlegende Begriffe und Formeln
Die durchschnittliche Änderungsrate einer Funktion bezieht sich immer auf ein bestimmtes Intervall und wird mit Hilfe des Differenzenquotienten berechnet:
Anschaulich ist dies die Steigung der Sekante der Funktion zwischen den Punkten und , Du kennst diese Formel bereits als Berechnung der Steigung einer linearen Funktion.
Die Sekante (der Begriff bedeutet aus dem Lateinischen übersetzt die Schneidende) ist eine Gerade, die durch mindestens 2 Punkte eines Funktionsgraphen verläüft, ihn also an mind. 2 Punkten schneidet.
Ein Beispiel:
Das Verkehrszeichen gibt an, dass der durchschnittlicher Höhenunterschied (also die durchschnittliche Änderungsrate) auf dieser Strecke 10 Höhenmeter pro 100m Wegstrecke beträgt. Die echte Strasse selbst verläuft natürlich nicht als exakt gerade Linie mit einer konstanten Steigung.
Um den Unterschied zwischen lokaler und durchschnittlicher Änderungsrate zu verstehen, denke über folgendes Beispiel nach:
Ein Autofahrer fährt durch eine Baustelle mit einer Geschwindikeitsbegrenzung von 60km/h. Er merkt sich den Zeitpunkt und Kilometerstand bei der Einfahrt und beim Verlassen der Baustelle und rechnet nach, dass seine durchschnittliche Geschwindigkeit unter 60km/h war. Trotzdem wird er in der Baustelle zum Zeitpunkt x von der mobilen Geschwindigkeitsüberwachnung der Polizei fotografiert. Diese erfasst nämlich die Geschwindigket (also die Änderung von )an einem bestimmten Punkt, also lokal oder momentan. Diese momentane Geschwindigkeit kann sich, wie in diesem Fall, deutlich von der durchschnittlichen unterscheiden.
Um die lokale Änderungsrate zu bestimmen, verkleinern wir den Abstand zwischen und , wählen also immer näher bei (dafür schreibst Du ). Dabei geht die Sekante in die Tangente über, eine Gerade also, die den Funktionsgraphen in genau einem Punkt berührt. Die Steigung der Tangente ist genau die (lokale) Änderungsrate der Funktion in diesem Punkt.
Die lokale Änderungsrate nennt man Differenzialquotient oder Ableitung und berechnet diese als Grenzwert (Du schreibst dafür ) der Sekantensteigungen:
Setzt man für den Abstand von zu so gilt die Formel:
Aufgaben der Schwierigkeitsstufe I
a) Ordne die Begriffe und Abbildungen richtig zu, in dem Du die auf das rechte oder linke Feld ziehst.
b) Erstelle in Deinem Heft ein MindMap zu dem Thema des Lernpfades. Nutze dafür die Begriffe und Darstellungen aus dem Teil a) dieser Aufgabe
Du benötigst für die Aufgabe Papier, Stifte und evtl. einen Taschenrechner.
a) Gegeben ist die Funktion auf dem Intervall [0; 2]
b) Gegeben ist die Funktion auf dem Intervall [1; 2]
c) Gegeben ist die Funktion auf dem Intervall [-2; -1]
d) Gegeben ist die Funktion auf dem Intervall [1,99; 2,01] Überlege, was hier aus dem Differenzenquotient wird?
Du benötigst für diese Aufgabe Papier und Stifte, um Notizen zu machen.
In dem Applet ist der Graph der Funktion f(x) = 0,1·x² + 1 dargestellt.
- Verändere mithilfe des Schiebereglers für Δx den Abstand zwischen den Punkten A und B.
- Notiere für Δx = 3,5 ; 3,0 ; 2,5; 2,0; 1,5; 1,2; 1,1 und 0,5 die Steigung k der Sekanten durch die Punkte A und B.
- Welche Steigung k der Tangente im Punkt A lässt sich als Grenzwert der Sekantensteigungen vermuten?
- Führe dieselbe Aufgabe für die Funktion f(x) = 0.1·x² durch. Was stellst Du fest? Ist es überraschend?
Aufgaben der Schwierigkeitsstufe II
Du benötigst für die Aufgabe kariertes Papier, Stifte, Lineal und evtl. einen Taschenrechner.
Gegeben sind die Funktionen:
- und der Punkt (2; f(2))
- und der Punkt (1; h(1))
a) Zeichne die Graphen der Funktionen f(x) und h(x) sowie nach Augenmaß die Tangenten in den angegebenen Punkten. Bestimme die Steigung der Funktion im gegebenen Punkt durch Ablesen der Tangentensteigung.
b) Bestimme rechnerisch die lokale Änderungsrate der jeweiligen Funktion im vorgegebenen Punkt. Vergleiche Deine Ergebnisse mit den Ergebnissen aus Teil a).
Die lokale Änderungsrate im vorgegebenem Punkt berechnest Du am besten mit dieser Formel: . Hier entspricht die Steigung dem Wert der Ableitung an der vorgegebenen Stelle.
Für die Funktion f(x) rechnest Du also:
, wenn Du h=0 einsetzt.
Für die Funktion h(x) rechnest Du:
Wenn Du sauber gezeichnet und abgelesen hast, sind die Antworten in den Teilen a) und b) gleich.
Du benötigst für die Aufgabe Papier, Stifte und einen Taschenrechner.
Die Verbreitung der Schockwelle einer atomaren Explosion kann man annähernd mit folgender Funktion beschreiben:
Dabei steht die Variable t für die Zeit nach der Explosion, gemessen in Sekunden, und die abhängige Variable R für den Radius der Verbreitung gemessen in km.
a) Berechne die mittlere Ausbreitungsgeschwindigkeit der atomaren Explosion in folgenden Zeitabschnitten:
- ersten 3 Sekunden nach der Explosion
- ersten 10 Sekunden nach der Explosion
- im Zeitintervall zwischen der 7. und der 10. Sekunde
Im Teil a) wird nach dem Differenzenquotient gefragt, denn Du mit der Formel : berechnest. Für die ersten 3 Sekunden heißt im Intervall [0; 3],somit: km/s
Die Lösung für die ersten 10 Sekunden lautet : 19,2 km/s. Im Zeitintervall zwischen der 7. und der 10. Sekunde beträgt die mittlere Ausbreitungsgeschwindigkeit : 30,4 km/sb)Berechne die Geschwindigkeit der Ausbreitung im angegebenen Zeitpunkt:
- zweite Sekunde nach Explosion
- zehnte Sekunde nach Explosion
Wird nach der Geschwindigkeit zu einem Zeitpunkt gefragt, so handelt es sich um die lokale Änderungsrate, Du musst also den Differentialquotienten berechnen. Die Formel hast Du bereits in der Aufgabe 4 benutzt. Für die Geschwindigkeit in der zweiten Sekunde rechnest Du also:
km/s.Die momentane Ausbreitungsgeschwindigkeit in der Sekunde 10 beträgt bereits : 35,2 km/s
Aufgaben der Schwierigkeitsstufe III
Du benötigst für die Aufgabe kariertes Papier, Stifte, Lineal und evtl. einen Taschenrechner.
Ein Teil der Achterbahn lässt sich durch den Graphen der Funktion: beschreiben.
a) Zeichne den Graphen der Funktion f(x) .Vervollständige folgende Tabelle, in dem Du in den angegebenen Punkten nach Augenmaß Tangenten zeichnest und deren Steigungen m durch Ablesen bestimmst.
b) Da es zu jedem Punkt nur eine Tangente gibt, so ist die Zuordnung eine Funktion m(x). Betrachte die Wertepaare in der Tabelle Teil a). Stelle die Gleichung der Funktion auf und zeichne diese in dein Koordinatensystem.
c) Berechne den Differentialquotient (Ableitung) von in einem beliebigen Punkt. Vergleiche dein Ergebnis mit dem Ergebnis von Teil b)