Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung |
||
Zeile 187: | Zeile 187: | ||
{{Lösung versteckt|1 = [[Datei:Tabelle Loesung.png|550 px|zentriert|rahmenlos|mini]]|2=Lösung|3=Lösung}} | {{Lösung versteckt|1 = [[Datei:Tabelle Loesung.png|550 px|zentriert|rahmenlos|mini]]|2=Lösung|3=Lösung}} | ||
'''b)''' Da es zu jedem Punkt nur eine Tangente gibt, so ist die Zuordnung <math>m \longmapsto x</math> eine Funktion m(x). Betrachte die Wertepaare in der Tabelle Teil a). Stelle die Gleichung der Funktion auf und zeichne diese in dein Koordinatensystem. | |||
''' | {{Lösung versteckt|1 = Die Funktionsgleichung lautet: <math>m(x) = \tfrac{1}{2} x</math>. Denn <math>-1 = 0,5 \times (-2) oder 1,5 = 0,5\times 3</math> Das Verfahren, dass Du hier geübt hast nennt man graphisches Differenzieren und die Funktion ist die Ableitungsfunktion von f(x). Im Teil c) kannst Du diese Behauptung rechnerisch überprüfen|2= Lösung|3=Lösung}} | ||
'''c)''' Berechne den Differentialquotient (Ableitung) von <math>f(x) = \tfrac{1}{2} x^2 + 1 </math>in einem beliebigen Punkt. | |||
{{Lösung versteckt|1 = TEXT|2=Lösung|3=Lösung}} |3= Üben}} | {{Lösung versteckt|1 = TEXT|2=Lösung|3=Lösung}} |3= Üben}} | ||
===So geht es weiter=== | ===So geht es weiter=== |
Version vom 15. April 2020, 20:28 Uhr
Allgemeine Hinweise zur Bearbeitung
Grundlegende Begriffe und Formeln
Aufgaben der Schwierigkeitsstufe I
Aufgaben der Schwierigkeitsstufe II