Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 59: Zeile 59:
a) Ordne die Begriffe und Abbildungen richtig zu, in dem Du die auf das rechte oder linke Feld ziehst. {{LearningApp|app=10636537}}
a) Ordne die Begriffe und Abbildungen richtig zu, in dem Du die auf das rechte oder linke Feld ziehst. {{LearningApp|app=10636537}}
b) Erstelle in Deinem Heft ein MindMap zu dem Thema des Lernpfades. Nutze dafür die Begriffe und Darstellungen aus dem Teil a) dieser Aufgabe|3=Üben}}
b) Erstelle in Deinem Heft ein MindMap zu dem Thema des Lernpfades. Nutze dafür die Begriffe und Darstellungen aus dem Teil a) dieser Aufgabe|3=Üben}}
{{Box|1= <span style="color: orange">2. Aufgabe: Bestimme die durchschnittliche Änderungsrate auf dem vorgegebenen Intervall</span>|2= Du benötigtst für die Aufgabe Papier, Stifte und evtl. einen Taschenrechner.
{{Lösung versteckt|1 = Um die Geraden zu zeichnen, betrachte zunächst den y-Achsenabschnitt. Falls du dir unsicher bist, was der y-Achsenabschnitt ist, scrolle hoch zum Lückentext in Aufgabe 1.
Anschließend betrachte die Steigung der Geraden. Zeichne ein Steigungsdreieck (Hilfe im Lückentext in Aufgabe 1) und zeichne eine Gerade mit Hilfe der Steigung. Nun hast du zwei Punkte, die auf der Geraden liegen (den y-Achsenabschnitt und einen Punkt auf dem Steigungsdreieck). Verbinde diesen beiden Punkte und du erhälst die Gerade. |2=Tipp 1|3=Tipp 1}}
{{Lösung versteckt|1 = Um die Koordinaten des Schnittpunktes zu bestimmten, setzte die beiden Geraden gleich und löse dann nach x auf.|2=Tipp 2|3=Tipp 2}}
<span style="color: orange">'''a)''' Gegeben sind die beiden Geraden <math>f(x)=2x+4</math> und <math>g(x)=3x</math>.</span>
{{Lösung versteckt|1 = Der Schnittpunkt liegt bei x= 4 und y = 12. Wie komme ich zu meiner Lösung? Ich setze die beiden Funktionen <math>f(x)</math> und <math>g(x)</math> gleich. Dann erhalte ich 2x+4=3x. Nun löse ich nach x auf. Ich erhalte den Wert x = 4. Jetzt kann ich den Wert x=4 in eine der beiden Gleichungen einsetzen und den y-Wert berechnen. |2=Lösung|3=Lösung}}
<span style="color: blue">'''b)''' Gegeben sind die beiden Geraden <math>f(x)=4x-5</math> und <math>g(x)=-3x+9</math>.</span>
{{Lösung versteckt|1 = Der Schnittpunkt liegt bei x= 2 und y = 3. Wie komme ich zu meiner Lösung? Ich setze die beiden Funktionen <math>g(x)</math> und <math>h(x)</math> gleich. Dann erhalte ich <math>4x-5=-3x+9</math>.Dann löse ich nach x auf. Ich erhalte den Wert x = 2. Jetzt kann ich den Wert x=2 in eine der beiden Gleichungen einsetzen und den y-Wert berechnen |2=Lösung|3=Lösung}}
<span style="color: green">'''c)''' Gegeben sind die beiden Geraden <math>f(x)= \frac{3}{2}x-3</math> und <math>g(x)= \frac{1}{2}x+17</math>.</span>
{{Lösung versteckt|1 = Der Schnittpunkt liegt bei x= 20 und y = 27. Wie komme ich zu meiner Lösung? Ich setze die beiden Funktionen <math>f(x)</math> und <math>h(x)</math> gleich. Dann erhalte ich <math>\frac{3}{2}x-3=\frac{1}{2}x+17</math>. Nun löse ich nach x auf. Ich erhalte den Wert x = 20. Jetzt kann ich den Wert x=20 in eine der beiden Gleichungen einsetzen und den y-Wert berechnen. |2=Lösung|3=Lösung}}
|3= Arbeitsmethode}}

Version vom 13. April 2020, 16:55 Uhr

Lernpfad: von der durchschnittlichen zur lokalen Änderungsrate

Dieser Lernpfad bietet Dir einen Einstieg in das Thema Differenzialrechnung. Zuerst erklären wir Dir wichtige Begriffe und Zusammenhänge. Danach kannst Du selbständig die Aufgaben bearbeiten. Du benötigst Papier und Stifte, Lineal und Taschenrechner. Die Aufgaben haben 3 unterschiedliche Schwierigkeitsstufen, die farblich gekennzeichnet sind:

- Schwierigkeitsstufe I mit gelben Titel: leichte Verständnis- und Rechenaufgaben zum Einstieg

- Schwierigkeitsstufe II mit blauen Titel: normale, mittelschwere Aufgaben zum üben und vertiefen.

- Schwierigkeitsstufe III mit grünen Titel: herausfordernde Aufgaben

Viel Erfolg!


Grundbegriffe: durchschnittliche Änderungsrate und Sekante

Die durchschnittliche Änderungsrate einer Funktion bezieht sich immer auf ein bestimmtes Intervall und wird mit Hilfe des Differenzenquotienten berechnet:


mini



Anschaulich ist dies die Steigung der Sekante der Funktion zwischen den Punkten und , Du kennst diese Formel bereits als Berechnung der Steigung einer linearen Funktion. Die Sekante (der Begriff bedeutet aus dem Lateinischen übersetzt die Schneidende) ist eine Gerade, die durch mindestens 2 Punkte eines Funktionsgraphen verläüft, ihn also an mind. 2 Punkten schneidet.





Ein Beispiel:

mini

Das Verkehrszeichen gibt an, dass der durchschnittlicher Höhenunterschied (also die durchschnittliche Änderungsrate) auf dieser Strecke 10 Höhenmeter pro 100m Wegstrecke beträgt. Die echte Strasse selbst verläuft natürlich nicht als exakt gerade Linie mit einer konstanten Steigung.


Grundbegriffe: lokale Änderungsrate und Tangente

Um den Unterschied zwischen lokaler und durchschnittlicher Änderungsrate zu verstehen, denke über folgendes Beispiel nach:

Ein Autofahrer fährt durch eine Baustelle mit einer Geschwindikeitsbegrenzung von 60km/h. Er merkt sich den Zeitpunkt und Kilometerstand bei der Einfahrt und beim Verlassen der Baustelle und rechnet nach, dass seine durchschnittliche Geschwindigkeit unter 60km/h war. Trotzdem wird er in der Baustelle zum Zeitpunkt x von der mobilen Geschwindigkeitsüberwachnung der Polizei fotografiert. Diese erfasst nämlich die Geschwindigket (also die Änderung von )an einem bestimmten Punkt, also lokal oder momentan. Diese momentane Geschwindigkeit kann sich, wie in diesem Fall, deutlich von der durchschnittlichen unterscheiden.

Um die lokale Änderungsrate zu bestimmen, verkleinern wir den Abstand zwischen und , wählen also immer näher bei (dafür schreibst Du ). Dabei geht die Sekante in die Tangente über, eine Gerade also, die den Funktionsgraphen in genau einem Punkt berührt. Die Steigung der Tangente ist genau die (lokale) Änderungsrate der Funktion in diesem Punkt.

mini

Die lokale Änderungsrate nennt man Differenzialquotient oder Ableitung und berechnet diese als Grenzwert (Du schreibst dafür ) der Sekantensteigungen:

Setzt man für den Abstand von zu so gilt die Formel:


1. Aufgabe. Überprüfe ob Du alles verstanden hast

a) Ordne die Begriffe und Abbildungen richtig zu, in dem Du die auf das rechte oder linke Feld ziehst.

b) Erstelle in Deinem Heft ein MindMap zu dem Thema des Lernpfades. Nutze dafür die Begriffe und Darstellungen aus dem Teil a) dieser Aufgabe


2. Aufgabe: Bestimme die durchschnittliche Änderungsrate auf dem vorgegebenen Intervall

Du benötigtst für die Aufgabe Papier, Stifte und evtl. einen Taschenrechner.

Um die Geraden zu zeichnen, betrachte zunächst den y-Achsenabschnitt. Falls du dir unsicher bist, was der y-Achsenabschnitt ist, scrolle hoch zum Lückentext in Aufgabe 1.

Anschließend betrachte die Steigung der Geraden. Zeichne ein Steigungsdreieck (Hilfe im Lückentext in Aufgabe 1) und zeichne eine Gerade mit Hilfe der Steigung. Nun hast du zwei Punkte, die auf der Geraden liegen (den y-Achsenabschnitt und einen Punkt auf dem Steigungsdreieck). Verbinde diesen beiden Punkte und du erhälst die Gerade.
Um die Koordinaten des Schnittpunktes zu bestimmten, setzte die beiden Geraden gleich und löse dann nach x auf.

a) Gegeben sind die beiden Geraden und .

Der Schnittpunkt liegt bei x= 4 und y = 12. Wie komme ich zu meiner Lösung? Ich setze die beiden Funktionen und gleich. Dann erhalte ich 2x+4=3x. Nun löse ich nach x auf. Ich erhalte den Wert x = 4. Jetzt kann ich den Wert x=4 in eine der beiden Gleichungen einsetzen und den y-Wert berechnen.


b) Gegeben sind die beiden Geraden und .

Der Schnittpunkt liegt bei x= 2 und y = 3. Wie komme ich zu meiner Lösung? Ich setze die beiden Funktionen und gleich. Dann erhalte ich .Dann löse ich nach x auf. Ich erhalte den Wert x = 2. Jetzt kann ich den Wert x=2 in eine der beiden Gleichungen einsetzen und den y-Wert berechnen


c) Gegeben sind die beiden Geraden und .

Der Schnittpunkt liegt bei x= 20 und y = 27. Wie komme ich zu meiner Lösung? Ich setze die beiden Funktionen und gleich. Dann erhalte ich . Nun löse ich nach x auf. Ich erhalte den Wert x = 20. Jetzt kann ich den Wert x=20 in eine der beiden Gleichungen einsetzen und den y-Wert berechnen.