Benutzer:Fabian WWU-5: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 33: | Zeile 33: | ||
}} | }} | ||
{{Box |1=<span style="color: blue">Aufgabe 9: Wasser für die Katze</span>|2= Marc und | {{Box |1=<span style="color: blue">Aufgabe 9: Wasser für die Katze</span>|2= Marc und Claudia freuen sich schon auf ihren Urlaub. Leider darf ihre Katze, Findus, jedoch nicht mit. Freundlicherweise will ihr Nachbar 1x täglich das Futter und Wasser nachfüllen. Damit Findus jedoch den ganzen Tag über Wasser finden kann, wollen die Beiden einen Wasserspender kaufen. Im Geschäft sehen sie zwei verschiedene Behälter, die unterschiedlich teuer sind. In den einen (Behälter A) passen <math>500ml</math> Wasser und er ist nach <math>15</math> Stunden leer. In Susannes Behälter (Behälter B) passen <math>300ml</math> rein und er ist erst nach <math>20</math> Stunden leer. Jetzt möchten die beiden herausfinden, welcher Behälter sich besser für ihre Katze eignet. | ||
Zeile 41: | Zeile 41: | ||
{{Lösung versteckt|1 = | {{Lösung versteckt|1 = Mit zwei Punkten kannst du bereits eine lineare Funktion aufstellen. Suche diese beiden Punkte im Text für die jeweiligen Behälter. Falls du die Punkte findest, aber Schwierigkeiten bei dem Aufstellen der Gleichung hast, schaue dir Aufgabe 4 an.| 2=Aufstellen der Gleichungen 1|3=Aufstellen der Gleichungen}} | ||
{{Lösung versteckt|1 = Die Punkte für den Behälter A sind <math> (0|500)</math> und <math>(15|0)</math>. Die Punkte für den Behälter B sind <math> (0|300)</math> und <math>(20|0)</math>. Setze für jeden Behälter die jeweiligen beiden Punkte in die allgemeine Form der linearen Funktion ein. |2=Tipp 2|3=Tipp 2}} | {{Lösung versteckt|1 = Die Punkte für den Behälter A sind <math> (0|500)</math> und <math>(15|0)</math>. Die Punkte für den Behälter B sind <math> (0|300)</math> und <math>(20|0)</math>. Setze für jeden Behälter die jeweiligen beiden Punkte in die allgemeine Form der linearen Funktion ein. |2=Tipp 2|3=Tipp 2}} |
Version vom 29. Oktober 2019, 08:09 Uhr
Ich benutze im Rahmen des Seminars DiWerS das Tool Zum Projekte.
Lineare Funktionen erkennen