|
|
Zeile 34: |
Zeile 34: |
| {{Lösung versteckt|1=Die Begründung für die Innenwinkelsumme basiert auf den Eigenschaften von Wechsel- und Stufenwinkeln|2=Tipp|3=Tipp verbergen}} | | {{Lösung versteckt|1=Die Begründung für die Innenwinkelsumme basiert auf den Eigenschaften von Wechsel- und Stufenwinkeln|2=Tipp|3=Tipp verbergen}} |
| {{Lösung versteckt|1=# '''Gegeben:''' Ein Dreieck mit den Innenwinkeln α=50°, β=60° und einem unbekannten Winkel γ. | | {{Lösung versteckt|1=# '''Gegeben:''' Ein Dreieck mit den Innenwinkeln α=50°, β=60° und einem unbekannten Winkel γ. |
| # '''Berechnung des unbekannten Winkels:''' Die Innenwinkelsumme eines Dreiecks beträgt immer 180°. Daher gilt: α+β+γ=180∘ Setze die gegebenen Werte ein: 50°+60°+γ=180° Berechne γ: 110°+γ=180°⇒γ=180°−110°=70° | | # '''Berechnung des unbekannten Winkels:''' Die Innenwinkelsumme eines Dreiecks beträgt immer 180°. Daher gilt: α+β+γ=180° Setze die gegebenen Werte ein: 50°+60°+γ=180° Berechne γ: 110°+γ=180°⇒γ=180°−110°=70° |
| # '''Begründung der Innenwinkelsumme:''' Die Summe der Innenwinkel eines Dreiecks ergibt immer 180°, weil die Winkel entlang einer Linie liegen, die durch parallele Linien und Transversalen entstehen kann. Eine Transversale ist eine Linie, die zwei oder mehr andere Linien schneidet, die sich möglicherweise parallel zueinander befinden. | | # '''Begründung der Innenwinkelsumme:''' Die Summe der Innenwinkel eines Dreiecks ergibt immer 180°, weil die Winkel entlang einer Linie liegen, die durch parallele Linien und Transversalen entstehen kann. Eine Transversale ist eine Linie, die zwei oder mehr andere Linien schneidet, die sich möglicherweise parallel zueinander befinden. |
| #* '''Wechselwinkel:''' Wenn du eine Parallele zur Basis des Dreiecks ziehst, entstehen Wechselwinkel. Diese Wechselwinkel sind gleich groß wie die Innenwinkel des Dreiecks. | | #* '''Wechselwinkel:''' Wenn du eine Parallele zur Basis des Dreiecks ziehst, entstehen Wechselwinkel. Diese Wechselwinkel sind gleich groß wie die Innenwinkel des Dreiecks. |
Version vom 10. Dezember 2024, 08:06 Uhr
Informationskästchen
Info
In diesem Lernpfadkapitel tauchen wir in die spannende Welt der Dreiecke ein und erforschen die Geheimnisse der Innenwinkelsumme.
Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Viel Erfolg!
Die Innenwinkelsumme im Dreieck
Was ist die Innenwinkelsumme in einem Dreieck?
In diesem Kapitel geht es um die Innenwinkelsumme im Dreieck. Probiere an dem GeoGebra Applet aus was mit den drei Winkeln im Dreieck passiert, wenn man sie aneinander legt, um das Besondere an der Innenwinkelsumme in einem Dreieck zu erkunden.
An den folgenden Bildern kann man sehen, dass die Winkel in einem Dreieck zusammen einen gestreckten Winkel ergeben, wenn man sie aneinanderlegt.
Formuliere einen Merksatz zu dem Innenwinkelsatz in einem Dreieck anhand deiner Beobachtungen am Applet.
Die Summe der Innenwinkel in einem Dreieck beträgt immer 180 Grad. Dies wird durch den Innenwinkelsatz beschrieben.
Fair Play im Ecken-Fußball: Ein geometrisches Problem im Sportunterricht
Winkelberechnung im Ecken-Fußball mit dem Innenwinkelsatz
Die Klasse 8a spielt in der Sportstunde Ecken-Fußball. Dafür stellen sie ein Dreieck aus Bänken auf, bei dem jede Ecke ein Tor darstellt. Der Kapitän von Mannschaft A behauptet, dass das Tor von Mannschaft C viel kleiner ist als die anderen. Hilf der Klasse 8a, indem du mithilfe des Applets überprüfst, wie die Bänke angeordnet werden müssen, damit jedes Tor gleich groß ist. Ist das Fußballspiel fair oder nicht?
Alle drei Bänke sind gleich lang. Was sagt euch das über die Größe der Winkel?
Das Tor von Mannschaft A hat einen Winkel von 60 Grad.
Weil alle drei Bänke gleich lang sind entsteht bei dem dreieckigen Spielfeld ein gleichseitiges Dreieck. Bei einem gleichseitigen Dreieck sind alle drei Winkel gleich groß. Wir wissen, dass die Innenwinkelsumme in einem Dreieck 180° beträgt. Daher führen wir folgende Rechnung durch: 180°:3= 60°
Antwort: Das Spiel ist fair, weil bei drei gleich langen Bänken drei gleich große Winkel mit jeweils 60° entstehen.
Aufgabe 1
Level 1: Grundlagen der Innenwinkelsumme
In einem Dreieck sind zwei Winkel gegeben: 50° und 60°. Der dritte Winkel ist jedoch verdeckt. Berechne den fehlenden Winkel und zeige, dass die Summe der Innenwinkel 180° ergibt.
Die Begründung für die Innenwinkelsumme basiert auf den Eigenschaften von Wechsel- und Stufenwinkeln
- Gegeben: Ein Dreieck mit den Innenwinkeln α=50°, β=60° und einem unbekannten Winkel γ.
- Berechnung des unbekannten Winkels: Die Innenwinkelsumme eines Dreiecks beträgt immer 180°. Daher gilt: α+β+γ=180° Setze die gegebenen Werte ein: 50°+60°+γ=180° Berechne γ: 110°+γ=180°⇒γ=180°−110°=70°
- Begründung der Innenwinkelsumme: Die Summe der Innenwinkel eines Dreiecks ergibt immer 180°, weil die Winkel entlang einer Linie liegen, die durch parallele Linien und Transversalen entstehen kann. Eine Transversale ist eine Linie, die zwei oder mehr andere Linien schneidet, die sich möglicherweise parallel zueinander befinden.
- Wechselwinkel: Wenn du eine Parallele zur Basis des Dreiecks ziehst, entstehen Wechselwinkel. Diese Wechselwinkel sind gleich groß wie die Innenwinkel des Dreiecks.
- Da eine gerade Linie immer 180∘ ergibt, ist die Innenwinkelsumme eines Dreiecks stets 180°.
Level 2: Weitere Spuren entdecken
Euer nächster Hinweis befindet sich in einem gleichschenkligen Dreieck. Ihr wisst, dass die beiden Basiswinkel jeweils 65° betragen, aber der Winkel an der Spitze ist unleserlich. Berechnet diesen Winkel und erklärt rechnerisch, warum die Innenwinkelsumme 180° ergibt. Argumentiert, warum die Summe der Winkel im Dreieck immer diese Zahl ergibt, egal wie das Dreieck aussieht.
In einem gleichschenkligen Dreieck sind die beiden Basiswinkel gleich. Hier beträgt jeder der beiden Basiswinkel 65°. Um den Spitzenwinkel x zu berechnen, nutzen wir wieder die Innenwinkelsumme eines Dreiecks, die stets 180° beträgt.
Rechnung:
Die Summe der beiden Basiswinkel beträgt:
65°+65°=130°
Der Spitzenwinkel x ergibt sich aus:
x=180°−130°=50°
Der Winkel an der Spitze ist 50°.
Nachweis der Innenwinkelsumme:
65°+65°+50°=180°
Damit ist die Innenwinkelsumme des Dreiecks rechnerisch bestätigt.
Warum ist die Summe immer 180°?
Die Innenwinkelsumme eines Dreiecks beträgt immer 180°, weil die drei Innenwinkel zusammen eine gerade Linie ergeben, wenn man die Winkel nebeneinander legt. Dies folgt aus den geometrischen Eigenschaften von Dreiecken:
Definition von Winkeln und Linien: Ein gerader Winkel entspricht 180°.
Geometrische Herleitung: Wenn man in einem Dreieck eine der Seiten verlängert, bildet der äußere Winkel zusammen mit dem Innenwinkel an der Basis einen geraden Winkel (180°). Alle Innenwinkel summieren sich daher ebenfalls zu 180°. Egal, wie ein Dreieck geformt ist (spitzwinklig, rechtwinklig, stumpfwinklig), bleibt diese Eigenschaft bestehen, da sie auf den geometrischen Grundlagen basiert.
Level 3: Das letzte Rätsel
Auf dem letzten Teil eurer Jagd entdeckt ihr eine mysteriöse geometrische Nachricht: "In jedem Dreieck steht ein gestreckter Winkel, wenn man die Innenwinkel nebeneinanderlegt." Ihr sollt dies überprüfen, in dem ihr ein eigenes Dreieck konstruiert und die drei Innenwinkel nebeneinander anordnet. Zeigt, dass diese Winkel zusammen einen gestreckten Winkel (180°) ergeben und begründet rechnerisch und logisch, warum dies immer so ist.
Zusatzfrage: Überlegt, ob diese Regel auch für Vierecke gilt und begründet eure Antwort.
Überlegt euch, wie ihr ein Vieleck in Dreiecke zerlegen könnt. Jedes Dreieck hat eine Innenwinkelsumme von
180°. Die Anzahl der Dreiecke im Vieleck hilft euch dabei, die gesamte Innenwinkelsumme zu berechnen. Probiert es zuerst mit einem Viereck: Wie viele Dreiecke könnt ihr darin erkennen? Dann versucht es mit einem Fünfeck. Die Formel, die euch helfen könnte, lautet: (n−2)⋅180°, wobei n die Anzahl der Ecken des Vielecks ist.
Hauptaufgabe: Nachweis der Innenwinkelsumme von 180° im Dreieck
Konstruktion eines eigenen Dreiecks: Nehmen wir ein Dreieck mit den Innenwinkeln 50°, 60° und 70°.
Legt die drei Winkel nebeneinander, sodass sie eine gemeinsame Ecke haben. Wenn ihr die Winkel so arrangiert, bilden sie zusammen eine gerade Linie, also einen gestreckten Winkel von 180°.
Rechnung:50°+60°+70°=180°
Die Innenwinkelsumme eines Dreiecks ergibt sich aus der Geometrie von ebenen Flächen.
Ein Dreieck ist die einfachste geschlossene Form in der Ebene. Wenn man alle drei Innenwinkel nebeneinander legt, decken sie zusammen 180° ab, was der Definition eines gestreckten Winkels entspricht.
Zusatzfrage: Gilt diese Regel auch für Vierecke?
Nein, für Vierecke gilt diese Regel nicht direkt, da die Innenwinkelsumme eines Vierecks 360° beträgt.
Warum 360°? Ein Viereck kann in zwei Dreiecke unterteilt werden, und die Innenwinkelsumme eines Dreiecks ist 180°. Daher ergibt sich für ein Viereck: 180°+180°=360°
Begründung: Die Anzahl der Innenwinkel in einem Polygon bestimmt die Summe der Winkel. Für ein n-Eck gilt die Formel: Innenwinkelsumme=(n−2)⋅180°
Für ein Viereck (n=4) ergibt sich: (4−2)⋅180°=360°
Aufgabe 2
Aufgabe 2.1
Berechne den fehlenden Winkel mithilfe des Innenwinkelsatzes.
Berechne den fehlenden Winkel γ, indem du die anderen beiden Winkel von 180° abziehst.
Gesucht: γ
Lösungsweg: γ=180°-50°-35°=95°
Aufgabe 2.2
Erkenne die Innenwinkel des Dreiecks und berechne die fehlenden Winkelgrößen.
Der 102° Winkel und γ sind Nebenwinkel. Es gilt also 102°+γ=180°. Wie kannst du herausfinden, wie groß γ ist?
Wenn du die fehlenden Winkel α und γ berechnet hast, kannst du β mithilfe des Innenwinkelsatzes bestimmen.
Gesucht: α, β, γ
Lösungsweg:
Der 50° Winkel und α bilden einen rechten Winkel (90°), das heißt α=90°-50°=40°.
Der 102° Winkel und γ sind Nebenwinkel, das heißt sie sind zusammen 180° groß. Damit ergibt sich: γ=180°-102°=78°.
β kann mithilfe des Innenwinkelsatzes bestimmt werden: β=180°-α-γ=180°-40°-78°=62°.
Aufgabe 2.3
Berechne die fehlenden Winkelgrößen.
Der 52° Winkel und α sind Nebenwinkel. Wie groß ist dann α?
Die fehlenden Winkel β und γ können mithilfe des Innenwinkelsatzes berechnet werden.
Gesucht: α, β, γ
Lösungsweg:
Der eingezeichnete 52° Winkel und α sind Nebenwinkel, das heißt sie sind zusammen 180° groß. Damit ergibt sich: α=180°-52°=128°.
Den fehlenden Winkel β kann nun mithilfe des Innenwinkelsatzes berechnet werden: β=180°-α-20°=180°-128°-20°=32°.
Auch Winkel γ kann mithilfe des Innenwinkelsatzes berechnet werden: β=180°-53°-52°=75°.
Aufgabe 3
Teste dein Wissen!
Starte die Aufgabe, indem du auf "Ok" klickst. Falls du einen Tipp brauchst, schaue unter der Aufgabe. Dort findest du auch die Lösungswege.
Aufgabenteil 1
Ein Kreis hat insgesamt 360°, also sind α und der fehlende Winkel zusammen 360° groß. Wie kannst du damit den fehlenden Winkel bestimmen?
Zunächst muss der Winkel bei dem eingezeichneten Winkel von 267° berechnet werden. Ein Kreis hat 360°. Um den Winkel zu bestimmen, muss also gerechnet werden: 360°-267°=93°. Der zweite fehlende Winkel kann mithilfe des Innenwinkelsatzes bestimmt werden: 180°-93°-50°=37°.
Aufgabenteil 2 (gleichschenkliges Dreieck)
Bei einem gleichschenkligen Dreieck sind die beiden Winkel an den gleich langen Schenkeln immer gleich groß.
ei einem gleichschenkligen Dreieck sind die beiden Winkel an den gleich langen Schenkeln immer gleich groß. Das bedeutet, der Winkel β ist ebenfalls 70° groß. Der fehlende Winkel γ kann mithilfe des Innenwinkelsatzes berechnet werden: γ=180°-α-β=180°-70°-70°=40°.
Hier kommst du zurück zur Startseite des Kapitels: Geometrie im Dreieck