Geometrie im Dreieck/Geheimcode der Geometrie: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierungen: Manuelle Zurücksetzung 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 46: | Zeile 46: | ||
== Aufgabe 4 (Sicherung) == | == Aufgabe 4 (Sicherung) == | ||
{{LearningApp|width=100%|height=500px|app=25228963}} | {{LearningApp|width=100%|height=500px|app=25228963}} | ||
<Hallo/span style="color: red"> |
Version vom 8. November 2024, 09:19 Uhr
Informationskästchen
Einführung
Stimmt das auch wirklich? Wenn ja, dann müssten die drei Innenwinkel im Dreieck einen gestreckten Winkel ergeben. Das sollte dann also in etwa so aussehen:
Reiße die zwei Winkel α und β deines Dreiecks (auf dem Arbeitsblatt) ab und prüfe, ob man sie an der Spitze zu einem gestreckten Winkel mit 180° anordnen kann.
Aufgabe 1
siehe Arbeitsblatt
Aufgabe 2
Aufgabe 2.1
Addiere alle drei Innenwinkel, um die Innenwinkelsumme zu berechnen.
Aufgabe 2.2
Erkenne die Innenwinkel und berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme.
Überlege zunächst, was die Innenwinkel und was die Außenwinkel sind.
Beta und Beta' sind Nebenwinkel. Wie kannst du herausfinden, wie groß Beta ist?
Aufgabe 2.3
Finde die Größe der Innenwinkel heraus und berechne mithilfe des Innenwinkelsatzes die Innenwinkelsumme.
Alpha ist der Stufenwinkel zu Alpha'.
Beta ist der Scheitelwinkel zu Beta'.
Gamma ist der Wechselwinkel zu Gamma'.
Aufgabe 3
Aufgabe 4 (Sicherung)
<Hallo/span style="color: red">