Digitale Werkzeuge in der Schule/Kleine Lernstandserhebung zur Doppeljahrgangsstufe 5/6/Natürliche Zahlen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 259: Zeile 259:


{{Lösung versteckt|1=  
{{Lösung versteckt|1=  
* Wenn in einer Aufgabe Zahlen mit verschiedenen Einheiten vorkommen, wandelst du die Einheiten so um, dass du nur noch eine Einheit hast. Dann kannst du wie gewohnt rechnen.  
1. Überlege zuerst: Welche Einheiten (z.B. Meter, Kilometer) kommen in der Aufgabe vor?
* Gib das Ergebnis in Metern, also m, an.
2. Wandel die Einheiten der Strecken in eine sinnvolle und gemeinsame Einheit um. D.h. notiere die einzelnen zurückgelegten Strecken von Aysen in Metern, Kilometern...
3. Jetzt kannst du alle Werte ganz einfach miteinander addieren.
4. Gib das Ergebnis in Metern, also m, an.
|2=Hinweis|3=Hinweis verstecken}}|Arbeitsmethode
|2=Hinweis|3=Hinweis verstecken}}|Arbeitsmethode
| Farbe = #CD2990
| Farbe = #CD2990

Version vom 1. Juni 2024, 14:58 Uhr

Info

Zahlen begegnen dir jeden Tag: Mitglieder einer AG, Besucher im Stadion, verkaufte Handys. Das sind „natürliche“ Zahlen. Wenn du loszählst, 0, 1, 2, 3 und so weiter, erhältst du die natürlichen Zahlen.

In diesem Lernpfadkapitel widmen wir uns den natürlichen Zahlen.

In diesem Kapitel wiederholst du ...

  • ... schriftliches Addieren und Subtrahieren natürlicher Zahlen
  • ... Fachbegriffe und Rechengesetze für die Addition und Subtraktion
  • ... schriftliches Multiplizieren und Dividieren natürlicher Zahlen
  • ... Fachbegriffe und Rechengesetze für die Multiplikation und Division

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Viel Erfolg!



Addieren und Subtrahieren von natürlichen Zahlen

Icon-pencil-9576.svg
(*) Aufgabe 1: Zahlenmauer
GeoGebra

Fachbegriffe und Rechengesetze

Icon-Pinnnadel.svg
Merksatz zu Fachbegriffen

Addition

Grundbegriffe der Addition.png








Subtraktion

Subtraktio.png
Icon-pencil-9576.svg
(**) Aufgabe 2: Fachbegriffe zur Addition und Subtraktion

Icon-Pinnnadel.svg
Merksatz Vertauschungsgesetz (Kommutativgesetz)

Das Vertauschungsgesetz (Kommutativgesetz) besagt: Beim Addieren kannst du die Summanden vertauschen. Das Ergebnis bleibt gleich. Beispiel: 83 + 92 =92 + 83


Vorsicht bei der Subtraktion

Untersuche das Vertauschen bei der Subtraktion.

Beispiel:

100 - 50 + 45 = 95

100 - 45 + 50 = 105

Also ist 100 - 50 + 45 nicht das gleiche wie 100 - 45 + 50.

Beim Subtrahieren kannst du Minuend und Subtrahend nicht vertauschen. Das Vertauschen von Subtrahend und Minuend führt nicht zum richtigen Ergebniss.


Icon-Pinnnadel.svg
Merksatz Verbindungsgesetz (Assoziativgesetz)

Das Verbindungsgesetz (Assoziativgesetz) besagt: Beim Addieren kannst du beliebig Klammern setzen oder weglassen. Das Ergebnis bleibt gleich. (Hinweis: Du rechnest zuerst die Klammer wegen Klammer vor Punkt vor Strich aus).

Beispiel:

26 + 73 + 37 = (26 + 73) + 37

26 + 73 + 37 = 26 + (73 + 37)


Vorsicht bei der Subtraktion

Untersuche das Setzen von Klammern bei der Subtraktion.

Beispiel:

(123 - 73) - 27 = 50 - 27 = 23

123 - (73 - 27) = 123 - 46 = 77

Also ist (123 - 73) - 27 nicht das gleiche wie 123 - (73 - 27).

Beim Subtrahieren kannst du nicht beliebig Klammern setzen. Das Setzen von Klammern bei der Subtraktion führt zu unterschiedlichen Ergebnisse.
Icon-pencil-9576.svg
(**) Aufgabe 3: Die Rechengesetze
GeoGebra




Schriftliche Addition von natürlichen Zahlen

Icon-Pinnnadel.svg
Merksatz zur schriftlichen Addition

Die schriftliche Addition hilft dir, größere und mehrere Zahlen zu addieren.

Schreibe die Zahlen immer stellengerecht untereinander:

Einer unter Einer, Zehner unter Zehner, ...
Stellenwerttafel Addition.png

Es gibt zwei verschiedene Arten der schriftlichen Addition:

  • Die Addition ohne Übertrag
  • Die Addition mit Übertrag


Die Addition ohne Übertrag

Du beginnst mit der Addition rechts.

Beispiel:

Addition ohne Übertrag.png








Die Addition mit Übertrag

Du beginnst wieder rechts mit der Addition.

Beispiel:

Addition mit Übertrag.png
Icon-pencil-9576.svg
(*) Aufgabe 4: Schriftliches Addieren mit großen Zahlen


Schriftliche Subtraktion von natürlichen Zahlen

Icon-Pinnnadel.svg
Merksatz zur schriftlichen Subtraktion

Die schriftliche Subtraktion hilft dir, größere und mehrere Zahlen zu subtrahieren.

Schreibe die Zahlen immer stellengerecht untereinander:

Einer unter Einer, Zehner unter Zehner, ...

Stellenwerttafel Subtraktion.png

Es gibt zwei verschiedene Arten der schriftlichen Subtraktion:

  • Die Subtraktion ohne Übertrag
  • Die Subtraktion mit Übertrag


Die Subtraktion ohne Übertrag

Du beginnst mit der Subtraktion rechts. Die untere Zahl wird dabei zur oberen Zahl ergänzt.

Beispiel:

Subtraktion ohne Übertrag.png










Die Subtraktion mit Übertrag

Du beginnst wieder rechts mit der Subtraktion.

Beispiel:

Subtraktion mit Übertrag.png
Icon-pencil-9576.svg
(**) Aufgabe 5: Schriftliches Subtrahieren mit großen Zahlen





Gemischte Aufgaben (Addition, Subtraktion, Fachbegriffe)

Hinweis: Verfahren bei Textaufgaben

Suche bei Anwendungsaufgaben nach Signalwörtern. Übersetze den Text in eine Rechnung, rechne aus und schreibe einen Antwortsatz in dein Heft.


Diese Signalwörter sagen dir, dass du subtrahierst:

  • vermindert
  • weniger
  • Abnahme
  • wegnehmen
  • verringern
  • abziehen

Diese Signalwörter sagen dir, dass du addierst:

  • vermehrt
  • mehr
  • Zuwachs
  • dazu
  • hinzufügen


Icon-pencil-9576.svg
(**) Aufgabe 6: Waffelverkauf
Waffelverkauf.png
Die 6b hat 120 € in der Klassenkasse. Mit einem Waffelverkauf hat die 6b 48 € verdient und diese 48 € in die Klassenkasse hinzufügt. Für ihr Sommerfest nimmt die Klasse aus der Klassenkasse 80 € für Getränke und Essen weg. Wie viel Geld hat die 6b nach dem Sommerfest in der Klassenkasse?


Rechnung: 120 + 48 - 80 = 168 - 80 = 88

Die 6b hat nach dem Sommerfest 88 € in der Klassenklasse.



Icon-pencil-9576.svg
Grundlagen-bearbeiten.png (**) Aufgabe 7: Laufen
Laufen.png

Bearbeite folgende Aufgabenstellung auf deinem Arbeitsblatt:

Aysen trainiert und läuft dreimal in der Woche. Am Montag läuft sie 2 km, dazu kommen am Mittwoch 3 km, aber am Freitag kommt weniger dazu als zuvor, nur 800 m. Wie viel ist sie am Ende der Woche gelaufen?

1. Überlege zuerst: Welche Einheiten (z.B. Meter, Kilometer) kommen in der Aufgabe vor? 2. Wandel die Einheiten der Strecken in eine sinnvolle und gemeinsame Einheit um. D.h. notiere die einzelnen zurückgelegten Strecken von Aysen in Metern, Kilometern... 3. Jetzt kannst du alle Werte ganz einfach miteinander addieren.

4. Gib das Ergebnis in Metern, also m, an.



Icon-pencil-9576.svg
(***) Aufgabe 8: Knobelaufgabe

Multiplizieren und Dividieren von natürlichen Zahlen

(*) Aufgabe 1: Multiplikation Pferderennen

(*) Aufgabe 2: Division Zuordnen

Fachbegriffe und Rechengesetze

Icon-Pinnnadel.svg
Merksatz zu den Fachbegriffen der Multiplikation und Division

Multiplizieren oder "mal rechnen" bedeutet, dass du eine Zahl immer wieder dazu nimmst. Zum Beispiel, wenn du 3•4 rechnest, bedeutet das, dass du die Zahl 3 vier Mal nimmst und zusammenzählst. Also: 3 + 3 + 3+12. Das ist das Ergebnis von 3•4. Das Produkt ist das Ergebnis einer Multiplikation und das Vielfache ist das Ergebnis der Multiplikation einer Zahl mit einer anderen ganzen Zahl.


Screenshot 2024-05-10 105837.jpg

Division oder "geteilt durch rechnen" bedeutet, dass du etwas in gleich große Teile aufteilst. Stell dir vor, du hast 12 Gummibärchen und möchtest sie auf 3 Freunde aufteilen. Du würdest 12 durch 3 teilen, um herauszufinden, wie viele Gummibärchen jeder Freund bekommt. In diesem Fall würden alle 3 Freunde Gummibärchen bekommen, weil 12 ÷ 3 = 4. Das ist die Division! Es hilft uns, Dinge fair aufzuteilen. Der Divisor ist die Zahl, durch die du teilst und der Quotient ist das Ergebnis, wenn du Zahlen miteinander teilst. Achtung: Du darfst nicht durch Null teilen!

Screenshot 2024-05-10 110117.jpg


(*) Aufgabe 3: Fachbegriffe zur Multiplikation und Division


Icon-pencil-9576.svg
(**) Aufgabe 4: Vorteilhaftes Rechnen

Rechne vorteilhaft, indem du das Vertauschungsgesetz anwendest und notiere deine Ergebnisse im Heft:


Rechnungen:

Icon-Pinnnadel.svg
Merksatz Vertauschungsgesetz (Kommutativgesetz)

Das Vertauschungsgesetz (Kommutativgesetz) besagt: Beim Multiplizieren kannst du die Faktoren vertauschen. Das Ergebnis bleibt gleich. Beispiel:


Vorsicht bei der Division

Untersuche das Vertauschen bei der Division.

Beispiel:


Also ist nicht das gleiche wie .

Beim Dividieren kannst du Dividend und Divisor nicht vertauschen. Das Vertauschen von Dividend und Divisor führt nicht zum richtigen Ergebniss.


Icon-Pinnnadel.svg
Merksatz Verbindungsgesetz (Assoziativgesetz)

Das Verbindungsgesetz (Assoziativgesetz) besagt: Beim Multiplizieren kannst du beliebig Klammern setzen oder weglassen. Das Ergebnis bleibt gleich. (Hinweis: Du rechnest zuerst die Klammer wegen Klammer vor Punkt vor Strich aus).

Beispiel:


Vorsicht bei der Division

Untersuche das Setzen von Klammern bei der Division.

Beispiel:

Also ist nicht das gleiche wie .

Beim Dividieren kannst du nicht beliebig Klammern setzen. Das Setzen von Klammern bei der Division führt zu unterschiedlichen Ergebnisse.


Schriftliche Multiplikation von natürlichen Zahlen

Icon-Pinnnadel.svg
Merksatz schriftliches Multiplizieren

Für schriftliches Multiplizieren werden wir unsere Faktoren in Einer, Zehner und Hunderter (ggf. auch Tausender und höher, falls die Aufgabe dies verlangt) zerlegen. Die schriftliche Multiplikation basiert dann darauf, die einzelnen Ziffern zu multiplizieren und die Ergebnisse schließlich zu addieren.

Wichtig:

1) Wir rechnen von hinten nach vorne

2) Beginne mit der rechten Ziffer der hinteren Zahl (der Einerstelle) und multipliziere sie mit jeder Ziffer der vorderen Zahl

Schriftliches Multiplizieren.jpg


Icon-pencil-9576.svg
(***) Aufgabe 5: Schriftliches Multiplizieren mit großen Zahlen
Multipliziere schriftlich mithilfe der App.
GeoGebra


Schriftliche Division von natürlichen Zahlen

Icon-Pinnnadel.svg
Merksatz schriftliches Dividieren

Vorgehen:

1)Du teilst die Ziffer der linken Zahl durch die rechte Zahl (Divisor ) und schreibst das Ergebnis hinter das Gleichheitszeichen.

2) Du multiplizierst das Teilergebnis mit dem Divisor und schreibst es mit Minus unter linke Zahl.

3) Du subtrahierst (Minus-Rechnen)

4) Du holst die weiteren Ziffern "herunter" und wiederholst die Schritte

Schriftliches Dividieren.jpg


Icon-pencil-9576.svg
(**) Aufgabe 6: Schriftliches Dividieren mit großen Zahlen

Dividiere schriftlich mithilfe der App.

Gemischte Aufgaben (Multiplikation, Division, Fachbegriffe)

Hinweis: Verfahren bei Textaufgaben

Suche bei Anwendungsaufgaben nach Signalwörtern. Übersetze den Text in eine Rechnung, rechne aus und schreibe einen Antwortsatz in dein Heft.


Diese Signalwörter sagen dir, dass du multiplizierst:

  • ...mal so viel
  • das ...-fache
  • multiplizieren
  • verdoppeln
  • vervielfachen
  • je

Diese Signalwörter sagen dir, dass du dividierst:

  • aufteilen
  • halbieren
  • austeilen
  • durch
  • dividieren


Icon-pencil-9576.svg
Grundlagen-bearbeiten.png (**) Aufgabe 7: Erkennen von Signalwörtern der Multiplikation und Division

Schau dir dein Arbeitsblatt für die weiterführende Aufgabe an.


Icon-pencil-9576.svg
(**) Aufgabe 8: Ein Ausflug zum Möhnesee
Entre el mar y el cielo.JPG
Tom, Karl, Tina, Cleo, Max, Sophia und Sarah wollen sich für einen Ausflug zum Möhnesee im Sauerland ein Schlauchboot kaufen. Für das Schlauchboot müssen sie zusammen 371€ bezahlen. Den Preis möchten die Freunde untereinander aufteilen. Wie viel muss jede bzw. jeder zahlen?


Schaue nochmal bei den Signalwörtern nach, auf welche Grundrechenart das Wort "aufteilen" hindeutet.

Rechnung:

Jede bzw. jeder muss 53€ bezahlen.


Icon-pencil-9576.svg
Grundlagen-bearbeiten.png (**) Aufgabe 9: Schulkinder
A Hayesville High School classroom in Clay County, N.C., in 2004.jpg

Bearbeite folgende Aufgabe auf deinem Arbeitsblatt:

Eine Schuldirektorin erzählt euch über die Veränderungen der Anzahl der Schulkinder in ihrer Schule. Sie berichtet, dass zur Zeit insgesamt 412 Schulkinder die erste und zweite Klasse besuchen. Das sind nur halb so viele Schulkinder wie vor 6 Jahren. Die dritte und vierte Klasse besuchen derzeit 378 Schulkinder. Das sind dreimal so viele Schulkinder wie vor 6 Jahren. Wie viele Schulkinder besuchten vor 6 Jahren die erste und zweite Klasse und die dritte und vierte Klasse?

Das Gegenteil von der "Hälfte" ist das "Doppelte".


Icon-pencil-9576.svg
(***) Aufgabe 10: Wer wird Multiplikations- und Divisionsmeister?