Herta-Lebenstein-Realschule/Dezimalbrüche selbständig erarbeiten/1) Dezimalbrüche in der Stellenwerttafel: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 1: Zeile 1:
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}
{{Navigation|
{{Navigation|
[[Herta-Lebenstein-Realschule/Dezimalbr%C3%BCche_selbst%C3%A4ndig_erarbeiten/1) Dezimalbr%C3%BCche_in_der_Stellenwerttafel|1) Dezimalbrüche in der Stellenwerttafel]]
[[Herta-Lebenstein-Realschule/Dezimalbr%C3%BCche_selbst%C3%A4ndig_erarbeiten/1) Dezimalbr%C3%BCche_in_der_Stellenwerttafel|1) Dezimalbrüche in der Stellenwerttafel]]

Version vom 29. Januar 2022, 15:31 Uhr

1 Dezimalbrüche in der Stellenwerttafel

Merke

Schreibe ins Heft:
Dezimalbrüche sind Brüche in einer anderen Schreibweise: Sie haben den Nenner 10, 100, 1000, …
0,7 =  ; die erste Stelle nach dem Komma sind die Zehntel z (dezi).
0,08 =  ; die zweite Stelle nach dem Komma sind die Hundertstel h (centi).
0,004 =  ; die dritte Stelle sind Tausendstel t (milli).
Die Ziffern hinter dem Komma heißen Nachkommaziffern oder Dezimalen.
Dezimalbrüche lassen sich in einer Stellenwerttafel darstellen:

Stellenwerttafel.png


Dezimalzahlen lassen sich auch am Zahlenstrahl darstellen:

Zahlenstrahl-Lupe
Du kannst zwischen den natürlichen Zahlen auf dem Zahlenstrahl weitere Zahlen eintragen. Schau mit der Lupe!
GeoGebra

Applet von B. Lachner


Dezimalzahlen darstellen
Im nachfolgenden Applet kannst du die Dezimalzahlen als Bruchteile darstellen. Erkläre!
GeoGebra

Applet von B. Lachner

Übung 1
Bearbeite die folgenden Apps.





Übung 2 im Heft

Löse die Aufgaben aus dem Buch. Löse im Heft.

  • S. 105 Nr. 1
  • S. 105 Nr. 2


Übung 3 - online

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 1
  • 2
  • 3
  • 4


Überflüssige Nullen

Zeichne eine Stellenwerttafel in dein Heft und trage die folgenden Dezimalbrüche ein:

a) 2,50  b) 2,05    c) 2,0500    d) 00,500   e) 02,505

Welche Nullen kann man bei jeder Zahl weglassen, ohne dass sich der Wert des Dezimalbruches ändert?

Formuliere eine Regel.
Schreibe die Zahlen in eine Stellenwerttafel:Unnötige Nullen Tipp Stellenwerttafel.png
Welche Nullen dürfen weggelassen werden, ohne dass sich der Wert der Zahl ändert?Unnötige Nullen Tipp 2 Stellenwerttafel.png

Das folgende Quiz soll dir helfen, eine Regel zu formulieren.

Vergleiche deine Regel mit dem Lückentext. Falls nötig, ergänze und berichtige deine Regel.


Übung 4
Schreibe die Zahlen ohne unnötige Nullen.


Übung 5

Bearbeite die Aufgabe aus dem Buch. Löse im Heft.

  • S. 105 Nr. 7

Beachte den Tipp zu Nr. 7. Genau so musst du alle Aufgaben bearbeiten!
Schreibe immer zunächst die Aufgabe ab und schreibe dann - wenn möglich - nach Umwandlung in einen Bruch ohne die unnötigen Nullen (ähnlich wie in der App oben).
Notiere das folgende Beispiel für die Bearbeitung: Nr. 7a (erster Dezimalbruch)
Bearbeite die folgenden Aufgaben in derselben Weise.
S 105 - Nr 7a (Beispiel).jpg
Bei dir müssen neben einem Antwortsatz (wie dem folgenden) zusätzlich alle 12 Umwandlungen zu den Teilaufgaben im Heft notiert werden!
Erkenntnis:
Ist bei einem Dezimalbruch die letzte Nachkommaziffer eine Null, so kann diese weggelassen werden, ohne dass sich der Wert ändert.