Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Winkel und Skalarprodukt (Vektoren bzw. Geraden): Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
K (Interne Links verschönert) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 156: | Zeile 156: | ||
{{Lösung versteckt|1= Der Betrag eines Vektors ist im geometrischen Sinne seine Länge. Die Formel zur Berechnung des Betrags lautet: <math> | \vec{u} | = | \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} | = \sqrt{u_1 ^2 + u_2 ^2 + u_3^2} </math> | {{Lösung versteckt|1= Der Betrag eines Vektors ist im geometrischen Sinne seine Länge. Die Formel zur Berechnung des Betrags lautet: <math> | \vec{u} | = | \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} | = \sqrt{u_1 ^2 + u_2 ^2 + u_3^2} </math> | ||
Wenn du darüber noch mehr wissen möchtest, schaue dir das Lernpfadkapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Punkte und Vektoren im Raum]] an. | Wenn du darüber noch mehr wissen möchtest, schaue dir das Lernpfadkapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Punkte und Vektoren im Raum|Punkte und Vektoren im Raum]] an. | ||
|2= Erinnerung|3= Einklappen}} | |2= Erinnerung|3= Einklappen}} | ||
Zeile 224: | Zeile 224: | ||
In diesem Abschnitt lernst du, wie man den '''Winkel''' zwischen zwei Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben. | In diesem Abschnitt lernst du, wie man den '''Winkel''' zwischen zwei Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben. | ||
{{Lösung versteckt|1= Wenn du nicht mehr weißt, wie man eine Geradengleichung aufstellt, schau dir das Lernpfadkapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum]] an. | {{Lösung versteckt|1= Wenn du nicht mehr weißt, wie man eine Geradengleichung aufstellt, schau dir das Lernpfadkapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum|Geraden im Raum]] an. | ||
|2= Tipp|3= Einklappen}} | |2= Tipp|3= Einklappen}} | ||
Aktuelle Version vom 23. Juni 2021, 23:18 Uhr
Skalarprodukt und Orthogonalität
In diesem Abschnitt beschäftigen wir uns mit dem Skalarprodukt. Dieses ist ein wichtiger Bestandteil, um im weiteren Verlauf den Winkel zwischen zwei Vektoren und zwei Geraden berechnen zu können. Außerdem betrachten wir den Sonderfall, wenn das Skalarprodukt null wird.
Definitionen und Eigenschaften
Du hast immer noch keine genaue Vorstellung davon, wie du das Skalarprodukt zweier Vektoren berechnen kannst? Dann schaue dir das Video zum Thema Skalarprodukt an:
Aufgaben
Winkel
Im Folgenden schauen wir uns den Umgang mit Winkeln zwischen Vektoren und Geraden an.
Einführung
Du hast immer noch keine genaue Vorstellung davon, wie du den Winkel zwischen zwei Vektoren berechnen kannst? Dann schaue dir das Video an:
Aufgaben
Winkel zwischen zwei Vektoren
Winkel zwischen zwei Geraden
In diesem Abschnitt lernst du, wie man den Winkel zwischen zwei Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben.