Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Winkel und Skalarprodukt (Vektoren bzw. Geraden): Unterschied zwischen den Versionen
(Navigation hinzugefügt) Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 7: | Zeile 7: | ||
* ... geometrische Objekte und Situationen im Raum mit Hilfe des Skalarprodukts zu untersuchen. | * ... geometrische Objekte und Situationen im Raum mit Hilfe des Skalarprodukts zu untersuchen. | ||
Dazu haben wir für dich | Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen: | ||
*Mit Aufgaben, die <span style="color: #F19E4F"> '''orange''' </span> gefärbt sind, kannst du <span style="color:#F19E4F">'''grundlegende Kompetenzen'''</span> wiederholen und vertiefen. | *Mit Aufgaben, die <span style="color: #F19E4F"> '''orange''' </span> gefärbt sind, kannst du <span style="color:#F19E4F">'''grundlegende Kompetenzen'''</span> wiederholen und vertiefen. | ||
Zeile 47: | Zeile 47: | ||
=== | ===Aufgaben=== | ||
{{Box|1= Aufgabe 1: Das Skalarprodukt berechnen | {{Box|1= Aufgabe 1: Das Skalarprodukt berechnen | ||
Zeile 120: | Zeile 120: | ||
<math> \vec{u} \ast ( \vec{v} + \vec{w}) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \ast (\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix})</math> | <math> \vec{u} \ast ( \vec{v} + \vec{w}) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \ast (\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix})</math> | ||
2. Addiere die Vektoren <math> | 2. Addiere die Vektoren <math> \vec{v} </math> und <math> \vec{w} </math> komponentenweise. | ||
<math> = | <math> = \vec{u} \ast \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix} </math> | ||
3. | 3. Wende die Formel für das Skalarprodukt an. | ||
<math> = u_1 \cdot | <math> = u_1 \cdot (v_1 + w_1) + u_2 \cdot (v_2 + w_2) + u_3 \cdot (v_3 + w_3) </math> | ||
4. | 4. Multipliziere die Klammern aus (Distributivgesetz der reellen Zahlen). | ||
<math> = u_1 \cdot v_1 + u_1 \cdot w_1 + u_2 \cdot v_2 + u_1 \cdot w_2 + u_3 \cdot v_3 + u_1 \cdot w_3 </math> | |||
5. Sortiere die Summen (Kommutativgesetz der reellen Zahlen). | |||
<math> = u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3 + u_1 \cdot w_1 + u_1 \cdot w_2 + u_1 \cdot w_3 </math> | |||
6. Wende die Formel für das Skalarprodukt "rückwärts" an. | |||
<math> = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math> | <math> = \vec{u} \ast \vec{v} + \vec{u} \ast \vec{w} </math> | ||
Zeile 170: | Zeile 178: | ||
|3=Merksatz}} | |3=Merksatz}} | ||
=== | ===Aufgaben=== | ||
====Winkel zwischen zwei Vektoren==== | ====Winkel zwischen zwei Vektoren==== | ||
{{Box|1= Aufgabe 7: Winkelberechnung | {{Box|1= Aufgabe 7: Winkelberechnung | ||
Zeile 214: | Zeile 222: | ||
====Winkel zwischen zwei Geraden==== | ====Winkel zwischen zwei Geraden==== | ||
In diesem Abschnitt lernst du, wie man den ''' | In diesem Abschnitt lernst du, wie man den '''Winkel''' zwischen zwei Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben. | ||
{{Lösung versteckt|1= Wenn du nicht mehr weißt, wie man eine Geradengleichung aufstellt, schau dir das Lernpfadkapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum]] an. | {{Lösung versteckt|1= Wenn du nicht mehr weißt, wie man eine Geradengleichung aufstellt, schau dir das Lernpfadkapitel [[Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum]] an. | ||
|2= Tipp|3= Einklappen}} | |2= Tipp|3= Einklappen}} | ||
{{Box|1= | {{Box|1=Winkel zwischen zweier Geraden | ||
|2= | |2=Auch zwischen zwei Geraden kann man einen Winkel berechnen, sogar dann, wenn sich die Geraden gar nicht schneiden. | ||
Um den | Um den Winkel zu berechnen, in den zwei Geraden zueinander stehen, betrachtest du lediglich die Richtungsvektoren der Geraden. | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1=Die Formel zur Berechnung des Winkels zwischen zwei Vektoren lautet | ||
Die Formel zur Berechnung des | |||
<math> \cos(\alpha) = \frac {\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} </math>. |2= Erinnerung|3= Einklappen}} | <math> \cos(\alpha) = \frac {\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} </math>. |2= Erinnerung|3= Einklappen}} | ||
Zeile 250: | Zeile 243: | ||
4. Formel nach <math> \alpha </math> auflösen | 4. Formel nach <math> \alpha </math> auflösen | ||
5. ggf. spitzen Winkel berechnen (siehe nächste Box) | |||
|2= Vorgehensweise | |2= Vorgehensweise | ||
|3= Einklappen}} | |3= Einklappen}} | ||
Zeile 255: | Zeile 250: | ||
|3= Merksatz}} | |3= Merksatz}} | ||
{{Box| | {{Box|Winkel zwischen zwei Geraden|Mit dem Winkel ist immer der spitze Winkel zwischen zwei Geraden und nie der Stumpfwinkel gemeint, d. h. <math> 0^\circ \leq \beta < 90^\circ </math>. Dies wird in der Formel nicht berücksichtigt. Stattdessen muss man, falls <math> \alpha \geq 90^\circ </math>, noch <math> \beta = 180^\circ - \alpha </math> berechnen. Der gesuchte Winkel ist dann <math> \beta </math>.|3= Merksatz}} | ||
{{Box|1= Aufgabe 9: | {{Box|1= Aufgabe 9: Winkel berechnen | ||
|2= Berechne den | |2= Berechne den Winkel zwischen den Geraden <math> g </math> und <math> h </math>. <math> r, s \in \mathbb{R} </math>. | ||
<math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} </math> | <math>g \colon \vec{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} </math> | ||
Zeile 277: | Zeile 272: | ||
<math> |\vec{v}| = \sqrt{1^2+(-1)^2+3^2} = \sqrt{11} </math> | <math> |\vec{v}| = \sqrt{1^2+(-1)^2+3^2} = \sqrt{11} </math> | ||
3. Ergebnisse in die Formel einsetzen | 3. Ergebnisse in die Formel einsetzen: Die in Schritt 1 und 2 berechneten Ergebnisse setzt du nun in die Formel ein. | ||
Die in Schritt 1 und 2 berechneten Ergebnisse setzt du nun in die Formel ein | |||
<math> \cos(\alpha) = \frac {\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} </math> | <math> \cos(\alpha) = \frac {\vec{u} \ast \vec{v}}{|\vec{u}| \cdot |\vec{v}|} </math> | ||
Zeile 284: | Zeile 278: | ||
und erhältst somit | und erhältst somit | ||
<math> \cos(\alpha) = \frac | <math> \cos(\alpha) = \frac {-2}{\sqrt{10} \cdot \sqrt{11}} </math> | ||
4. Formel nach <math> \alpha </math> auflösen | 4. Formel nach <math> \alpha </math> auflösen | ||
Der Schnittwinkel zwischen den beiden Geraden <math>g</math> und <math>h</math> beträgt ca. <math> 79 | <math> \alpha = \cos^{-1} (\frac{-2}{\sqrt{110}}) \approx 101^\circ </math> | ||
5. spitzen Winkel berechnen, da <math> \alpha \geq 90^\circ </math> | |||
<math> \beta = 180^\circ - 101^\circ = 79^\circ </math> | |||
Der Schnittwinkel zwischen den beiden Geraden <math>g</math> und <math>h</math> beträgt ca. <math> 79^\circ </math> | |||
|Lösung anzeigen | |Lösung anzeigen | ||
Zeile 306: | Zeile 305: | ||
1. Die Richtungsvektoren zwischen den Ortsvektoren bestimmen: | 1. Die Richtungsvektoren zwischen den Ortsvektoren bestimmen: | ||
<math> \vec{a} = \overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = \begin{pmatrix} | <math> \vec{a} = \overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 2\\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} </math> | ||
<math> \vec{b} = \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \begin{pmatrix} | <math> \vec{b} = \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} </math> | ||
<math> \vec{c} = \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} </math> | <math> \vec{c} = \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} </math> | ||
Betrachten wir das Skalarprodukt der Vektoren <math> \vec{b}</math> und <math> \vec{c}</math>: | Betrachten wir das Skalarprodukt der Vektoren <math> \vec{b}</math> und <math> \vec{c}</math>: | ||
<math> \vec{b} \ast \vec{c} = \begin{pmatrix} | <math> \vec{b} \ast \vec{c} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \ast \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 2 \cdot 1 + 0 \cdot 1 + (-2) \cdot 2 = 2 + 0 + (-2) = 0</math>. | ||
Dann wissen wir, wenn das Skalarprodukt null ist, dass | Dann wissen wir, wenn das Skalarprodukt null ist, dass die beiden Vektoren <math> \vec{b}</math> und <math> \vec{c} </math> orthogonal zueinander stehen, also <math> \alpha = 90^\circ</math>. | ||
2. Die Länge der Richtungsvektoren bestimmen: | 2. Die Länge der Richtungsvektoren bestimmen: | ||
<math> |\vec{a}| = \sqrt{ | <math> |\vec{a}| = \sqrt{1^2+(-1)^2+(-3)^2} = \sqrt{11} </math> | ||
<math> |\vec{b}| = \sqrt{ | <math> |\vec{b}| = \sqrt{2^2+0^2+(-2)^2} = \sqrt{8} </math> | ||
<math> |\vec{c}| = \sqrt{1^2+1^2+1^2} = \sqrt{3} </math> | <math> |\vec{c}| = \sqrt{1^2+1^2+1^2} = \sqrt{3} </math> | ||
Zeile 328: | Zeile 326: | ||
Diese Längen entsprechen auch den '''Seitenlängen''' des Dreiecks <math>ABC</math>. | Diese Längen entsprechen auch den '''Seitenlängen''' des Dreiecks <math>ABC</math>. | ||
3. Winkel <math> \delta </math> zwischen den beiden Vektoren <math> \vec{a} </math> und <math> \vec{c} </math> bestimmen: | |||
<math> \cos(\delta) = \frac {\vec{a} \ast \vec{c}}{|\vec{a}| \cdot |\vec{c}|} </math> | |||
<math> \cos(\delta) = \frac {1+(-1)+(-3)}{\sqrt{11} \cdot \sqrt{3}} = \frac{-3}{\sqrt{33}} </math> | |||
4. Formel nach <math> \delta </math> auflösen | |||
<math> \delta = \cos^{-1} \left(\frac{-3}{\sqrt{33}} \right) \approx 121{,}5^\circ </math> | |||
Da wir bereits wissen, dass <math> \alpha = 90^\circ</math>, kann der Dreiecksinnenwinkel beim Punkt <math>B</math> nicht <math> 121{,}5^\circ </math> sein, da die Winkelsumme sonst bereits bei <math> 90^\circ + 121{,}5^\circ = 211{,}5^\circ > 180^\circ </math> liegen würde. Also berechnen wir den Winkel: | |||
5. spitzen Winkel berechnen | |||
<math> | <math> \beta = 180^\circ - 121{,}5^\circ = 58{,}5^\circ </math> | ||
Den dritten Innenwinkel können wir anschließend wie folgt berechnen: | |||
<math> \gamma = 180^\circ - \alpha - \beta = 90^\circ - 58{,} | <math> \gamma = 180^\circ - \alpha - \beta = 180^\circ - 90^\circ - 58{,}5^\circ = 31{,}5^\circ </math> | ||
Die '''Innenwinkel''' des Dreiecks <math> ABC </math> sind <math> \alpha = 90^\circ, \beta = 58{,} | Die '''Innenwinkel''' des Dreiecks <math> ABC </math> sind <math> \alpha = 90^\circ, \beta = 58{,}5^\circ \text{ und } \gamma = 31{,}5^\circ.</math> | ||
|Lösung anzeigen | |Lösung anzeigen | ||
|Lösung verbergen | |Lösung verbergen |
Version vom 23. Juni 2021, 23:14 Uhr
Skalarprodukt und Orthogonalität
In diesem Abschnitt beschäftigen wir uns mit dem Skalarprodukt. Dieses ist ein wichtiger Bestandteil, um im weiteren Verlauf den Winkel zwischen zwei Vektoren und zwei Geraden berechnen zu können. Außerdem betrachten wir den Sonderfall, wenn das Skalarprodukt null wird.
Definitionen und Eigenschaften
Du hast immer noch keine genaue Vorstellung davon, wie du das Skalarprodukt zweier Vektoren berechnen kannst? Dann schaue dir das Video zum Thema Skalarprodukt an:
Aufgaben
Winkel
Im Folgenden schauen wir uns den Umgang mit Winkeln zwischen Vektoren und Geraden an.
Einführung
Du hast immer noch keine genaue Vorstellung davon, wie du den Winkel zwischen zwei Vektoren berechnen kannst? Dann schaue dir das Video an:
Aufgaben
Winkel zwischen zwei Vektoren
Winkel zwischen zwei Geraden
In diesem Abschnitt lernst du, wie man den Winkel zwischen zwei Geraden berechnet. Dabei sind die beiden Geraden in Parameterform gegeben.