Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lineare Gleichungssysteme: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 186: | Zeile 186: | ||
\end{align}</math> | \end{align}</math> | ||
Somit hat das Gleichungssystem '''genau eine Lösung'''. Die Lösungsmenge lautet <math> L= \{({-}1|\frac{2}{3}| | Somit hat das Gleichungssystem '''genau eine Lösung'''. Die Lösungsmenge lautet <math> L= \{({-}1|\frac{2}{3}| \frac{4}{3})\} </math>. | ||
|Lösungsweg |Lösungsweg ausblenden}} | |Lösungsweg |Lösungsweg ausblenden}} | ||
{{Lösung versteckt|Das Gleichungssystem besitzt genau eine Lösung. Die Lösungsmenge lautet <math> L= \{({-}1|\frac{2}{3}| | {{Lösung versteckt|Das Gleichungssystem besitzt genau eine Lösung. Die Lösungsmenge lautet <math> L= \{({-}1|\frac{2}{3}| \frac{4}{3})\} </math>. |Lösung |Lösung ausblenden}} | ||
'''b)''' Wie viele Lösungen besitzt das lineare Gleichungssystem? | '''b)''' Wie viele Lösungen besitzt das lineare Gleichungssystem? | ||
Zeile 314: | Zeile 314: | ||
{{Box | 1= Aufgabe 6: Variable frei wählen | 2= | {{Box | 1= Aufgabe 6: Variable frei wählen | 2= | ||
Im Beispiel ''Lösbarkeit linearer Gleichungssysteme'' wurde für die Variable <math> z </math> | Im Beispiel ''Lösbarkeit linearer Gleichungssysteme'' Teil c) wurde für die Variable <math> z </math> der Parameter <math> t </math> gesetzt. Somit hat sich für das lineare Gleichungssystem die Lösungsmenge <math> L= \{(2{-}t|2+2t|t) | t \in \mathbb{R}\} </math> ergeben. | ||
'''a)''' Bestimme eine konkrete mögliche Lösung für die angegebene Lösungsmenge des linearen Gleichungssystems. | '''a)''' Bestimme eine konkrete mögliche Lösung für die angegebene Lösungsmenge des linearen Gleichungssystems. | ||
{{Lösung versteckt| Setze für <math> t </math> eine beliebige reelle Zahl ein. |Tipp|Tipp ausblenden}} | |||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Beispiel: | Beispiel: Wähle <math> t = 5 </math>. Dann folgt für die Lösungsmenge: | ||
<math> L= \{(2{-}5|2+ 2\cdot 5|5)\} </math> also <math> L= \{({-}3|12|5)\} </math> | <math> L= \{(2{-}5|2+ 2\cdot 5|5)\} </math> also <math> L= \{({-}3|12|5)\} </math> | ||
Zeile 325: | Zeile 327: | ||
|Lösung |Lösung ausblenden}} | |Lösung |Lösung ausblenden}} | ||
'''b''' Für welche Variable könnte man statt für <math> z </math> noch einen Parameter setzen? Wie würde die Lösungsmenge dann aussehen? | '''b)''' Für welche Variable könnte man statt für <math> z </math> noch einen Parameter setzen? Wie würde die Lösungsmenge dann aussehen? Schau dazu noch einmal in den Lösungsweg des Beispiels ''Lösbarkeit linearer Gleichungssysteme'' Teil c). | ||
{{Lösung versteckt| | {{Lösung versteckt| |
Version vom 2. Juni 2021, 10:34 Uhr
Wiederholung: Verschiedene Verfahren zum Lösen linearer Gleichungssysteme
Lineare Gleichungssysteme mit dem Gauß-Algorithmus lösen
Lösbarkeit linearer Gleichungssysteme
Unter- und überbestimmte Gleichungssysteme
Multiplikation der dritten Gleichung mit und anschließende Subtraktion der zweiten Gleichung ergibt:
Aus der dritten Gleichung folgt:
Einsetzen von in die zweite Gleichung ergibt:
Einsetzen von und in die erste Gleichung ergibt:
An dieser Stelle entsteht ein Widerspruch. Die letzte Gleichung besitzt keine Gültigkeit. Das Gleichungssystem besitzt daher keine Lösung.
Subtraktion der ersten von der zweiten Gleichung ergibt:
Einsetzen von in die erste Gleichung ergibt:
Für dieses Gleichungssystem kann keine eindeutige Lösung bestimmt werden. Für wurde eine eindeutige Lösung bestimmt, und können nur in Abhängigkeit der jeweils anderen Variable bestimmt werden. So wurde hier die Variable in Abhängigkeit von bestimmt. Für kann also eine beliebige reelle Zahl eingesetzt werden, daher wird für ein Parameter eingesetzt: Sei . berechnet sich dann durch den Parameter . Das Gleichungssystem hat also unendlich viele Lösungen. Genauso wäre es möglich, die Variable in Abhängigkeit von zu bestimmen, also für einen Parameter zu setzen.
Multiplikation der dritten Gleichung mit und anschließende Subtraktion der zweiten Gleichung ergibt:
Einsetzen von in die zweite Gleichung ergibt:
Einsetzen von und in die erste Gleichung ergibt:
Hier entsteht also ein Widerspruch. Das Einsetzen von und in die erste Gleichung liefert ein anderes Ergebnis als das, was auf der rechten Seite der Gleichung steht. Daher gilt dieses Gleichungssystem als nicht lösbar, es besitzt also keine Lösung.
Interpretation der Lösung eines Linearen Gleichungssystems