Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Punkte und Vektoren im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 33: | Zeile 33: | ||
{{Box|1= Aufgabe 2: Geometrische Objekte im Koordinatensystem|2= Die abgebildete Pyramide besitzt einen einen Eckpunkt im Nullpunkt <math> A(0|0|0)</math>. Die quatratische Grundfläche der Pyramide liegt dabei auf der <math> x_1</math>-<math> x_2</math>-Ebene und die Spitze der Pyramide ist 5 Längeneinheiten hoch. | |||
{{Box|1= Aufgabe | |||
Zeile 44: | Zeile 43: | ||
- <math> B (1|0|0),C(0|1|1),D(0|0|1) </math> | - <math> B (1|0|0),C(0|1|1),D(0|0|1) </math> | ||
</quiz> | </quiz> | ||
<quiz display="simple"> | <quiz display="simple"> | ||
{Welche Aussage stimmt für | {Welche Aussage stimmt für den Flächeninhalt der Grundfläche der Pyramide ?} | ||
- | - Der Flächeninhalt der Grundfläche der Pyramide beträgt <math>5 \text{ LE}^2 </math>. | ||
- | - Der Flächeninhalt der Grundfläche der Pyramide beträgt <math>10 \text{ LE}^2 </math>. | ||
+ | + Der Flächeninhalt der Grundfläche der Pyramide beträgt <math>25 \text{ LE}^2 </math>. | ||
</quiz> | </quiz> | ||
{{Lösung versteckt|1=Die | {{Lösung versteckt|1=Die Gundfläche ist ein Quadrat. Durch Multiplizieren der Längen der Grundflächenkanten erhältst du den Flächeninhalt.|2= Tipp 2|3=Einklappen}} | ||
<quiz display="simple"> | <quiz display="simple"> | ||
{Wo liegt der Spitze der Pyramide ?} | {Wo liegt der Spitze der Pyramide ?} | ||
+ | + Die Spitze der Pyramide liegt bei <math> S (2{,}5|2{,}5|6) </math>. | ||
- | - Die Spitze der Pyramide liegt bei <math> S (5|5|5) </math>. | ||
- | - Die Spitze der Pyramide liegt bei <math> S (2{,}5|2{,}5|5) </math>. | ||
</quiz> | </quiz> | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1=Die Spitze einer Pyramide liegt mittig über der Grundseite.|2= Tipp 3|3=Einklappen}} | ||
|Farbe={{Farbe|orange}}|3= Arbeitsmethode}} | |Farbe={{Farbe|orange}}|3= Arbeitsmethode}} | ||
{{Box|1= Aufgabe | {{Box|1= Aufgabe 3: Vektoren|2= Betrachte die dargestellten Vektoren <math>\vec{u} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} </math>, <math>\vec{v} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}</math> und <math>\vec{w} = \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix}</math>. | ||
[[Datei:Vektoren.jpg|rahmenlos|600x600px]] | [[Datei:Vektoren.jpg|rahmenlos|600x600px]] | ||
Zeile 102: | Zeile 100: | ||
|Farbe={{Farbe|orange}}|3= Arbeitsmethode}} | |Farbe={{Farbe|orange}}|3= Arbeitsmethode}} | ||
{{Box | 1= Aufgabe | {{Box|1= Aufgabe 4: Vektoren addieren und mit einem Skalar multiplizieren|2= | ||
{{LearningApp|width=100%|height=500px|app=11071387}} | |||
|3=Arbeitsmethode|Farbe={{Farbe|orange}}}} | |||
{{Box|1= Aufgabe 5: Lückentext - Geometrische Bedeutung von Vektoraddition und skalarer Multiplikation|2= | |||
<div class="lueckentext-quiz"> | |||
Wir definieren zwei '''Rechenoperationen''' für Vektoren: das Bilden des Vielfachen und der Summe. Die '''Vektoraddition''' bezeichnet das bilden der '''Summe''' zweier Vektoren gleichen Typs, das heißt dass die beiden Vektoren gleich viele '''Komponenten''' haben. Man bildet die Summe, indem man die '''Einträge''' der Vektoren '''komponentenweise''' addiert. Wir können uns die Addition von Vektoren als ein „'''Aneinanderlegen'''“ von zwei '''Strecken''' von ggf. verschiedener Länge vorstellen. Nennen wir <math> \vec{a} </math> und <math> \vec{b}</math> Vektoren. Wir deuten diese als '''Pfeile''' und addieren sie, das heißt wir legen sie hintereinander, sodass der '''Anfang''' von <math> \vec{b} </math> und die „'''Spitze'''“ von <math> \vec{a} </math> übereinstimmen. Ein derartiges Verhalten von Pfeilen ist aus der '''Physik''' bekannt. Dort werden oftmals '''Kräfte''' und Geschwindigkeiten mit Pfeilen dargestellt. Man kann am Ende zur Addition sagen, dass das Bilden der Summe zweier Vektoren <math> \vec{a} + \vec{b} </math> als '''Hintereinander-Ausführen''' der durch <math> \vec{a} </math> und <math> \vec{b} </math> dargestellten '''Verschiebungen''' gesehen werden kann. | |||
</div> | |||
<div class="lueckentext-quiz"> | |||
Das Bilden des '''Vielfachen''' eines Vektors wird auch als '''Multiplikation mit einem Skalar''' bezeichnet. Wir nennen unseren '''Vektor''' wieder <math> \vec{a} </math> und das '''Skalar''' bezeichnen wir mit <math> c </math>. Von jedem Vektor kann das '''<math> c </math> -Fache''' gebildet werden, indem '''alle Komponenten''' von <math> \vec{a} </math> '''mit <math> c </math> multipliziert''' werden. Ist '''<math> c>0 </math>''' so wird der „Pfeil“ von <math> \vec{a} </math> um den Faktor <math> c </math> aufgeblasen ('''falls <math>c > 1</math>''') oder geschrumpft ('''falls <math>c < 1</math> '''). Ist '''<math>c<0</math>''', so erhält der Pfeil, der um den Faktor <math> c </math> aufgeblasen oder geschrumpft wird, noch eine '''Richtungsumkehrung'''. Für den Fall ''' <math> c=-1 </math> ''' sprechen wir dann vom '''Gegenvektor''' von <math> \vec{a} </math>. | |||
Wir nennen zwei Vektoren '''kollinear''' (oder parallel), wenn einer der Vektoren ein '''Vielfaches des anderen''' ist. Mit anderen Worten: Wenn <math> \vec{a} </math> und <math> \vec{b} </math> zwei '''verschiedene''' Vektoren sind, so sind sie '''parallel/kollinear''' zueinander, falls ein '''Skalar <math> c </math>''' existiert, sodass gilt: '''<math> ca=b </math>'''. Dabei ist es egal, ob die beiden Vektoren in '''verschiedene''' '''Richtungen''' zeigen oder nicht. | |||
</div> | |||
|3=Arbeitsmethode}} | |||
{{Box|1= Aufgabe 6: Kollinearität von Vektoren|2= | |||
{{LearningApp|width=100%|height=500px|app=11504986}} | |||
|3=Arbeitsmethode|Farbe={{Farbe|orange}}}} | |||
{{Box|1=Aufgabe 7: Länge und Abstände von Vektoren|2= | {{Box|1=Aufgabe 7: Länge und Abstände von Vektoren|2= | ||
Zeile 146: | Zeile 162: | ||
|3=Arbeitsmethode|Farbe={{Farbe|orange}}}} | |3=Arbeitsmethode|Farbe={{Farbe|orange}}}} | ||
{{Box|1= Aufgabe 8: Besondere Vierecke | |||
{{Box|1= Aufgabe 8 | |||
|2= | |2= | ||
Version vom 29. Mai 2021, 18:34 Uhr
Wiederholung von Punkten und Vektoren