Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Punkte und Vektoren im Raum: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 17: | Zeile 17: | ||
Zum Punkt <math>A(1|2|3) </math> gehört also der Ortsvektor <math>\vec {a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} </math>. | Merksatz}} | Zum Punkt <math>A(1|2|3) </math> gehört also der Ortsvektor <math>\vec {a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} </math>. | Merksatz}} | ||
{{Box|1= Aufgabe 1: Koordinatensysteme|2= Für diese Aufgabe benötigst du einen Bleistift, ein kariertes Blatt Papier und ein Geodreieck. Bearbeite die folgenden Aufgaben. | <nowiki>{{Box|1= Aufgabe 1: Koordinatensysteme|2= Für diese Aufgabe benötigst du einen Bleistift, ein kariertes Blatt Papier und ein Geodreieck. Bearbeite die folgenden Aufgaben.</nowiki> | ||
# Zeichne ein dreidimensionales Koordinatensystem. Wähle eine passende Skalierung anhand der angegebenen Punkte im Aufgabenteil 2 und 3. | |||
# Zeichne die Punkte <math> A (1|2|1)</math>,<math> B(1|4|2)</math>, <math> C(1|2|{-}1{,}5)</math> und <math> D(1|4|{-}0{,}5) </math> in das gezeichnete Koordinatensystem. Zeichne nun die Strecken <math>\vec{ AB }</math> , <math>\vec{ AC }</math>,<math>\vec{ CD }</math> und <math>\vec{ BD }</math> ein. Handelt es sich um eine zweidimensionale Figur oder um einen Körper? Benenne sie oder ihn. | #Zeichne ein dreidimensionales Koordinatensystem. Wähle eine passende Skalierung anhand der angegebenen Punkte im Aufgabenteil 2 und 3. | ||
# Nutze den Punkt <math> A (1|2|1)</math> aus Aufgabenteil 2. Füge die Punkte <math> E (-1|2|1)</math>,<math> F(1|0|1)</math>, <math> G(-1|0|1)</math> und <math> H(0|1|5) </math>. Zeichne nun die Strecken <math>\vec{ AE }</math>,<math>\vec{ AF }</math>, <math>\vec{ AH }</math>, <math>\vec{ EG }</math>, <math>\vec{ AH }</math>, <math>\vec{ FG }</math>, <math>\vec{ FH }</math> und <math>\vec{ GH }</math> ein. Handelt es sich um eine zweidimensionale Figur oder um einen Körper? Benenne sie oder ihn. | #Zeichne die Punkte <math> A (1|2|1)</math>,<math> B(1|4|2)</math>, <math> C(1|2|{-}1{,}5)</math> und <math> D(1|4|{-}0{,}5) </math> in das gezeichnete Koordinatensystem. Zeichne nun die Strecken <math>\vec{ AB }</math> , <math>\vec{ AC }</math>,<math>\vec{ CD }</math> und <math>\vec{ BD }</math> ein. Handelt es sich um eine zweidimensionale Figur oder um einen Körper? Benenne sie oder ihn. | ||
#Nutze den Punkt <math> A (1|2|1)</math> aus Aufgabenteil 2. Füge die Punkte <math> E (-1|2|1)</math>,<math> F(1|0|1)</math>, <math> G(-1|0|1)</math> und <math> H(0|1|5) </math>. Zeichne nun die Strecken <math>\vec{ AE }</math>,<math>\vec{ AF }</math>, <math>\vec{ AH }</math>, <math>\vec{ EG }</math>, <math>\vec{ AH }</math>, <math>\vec{ FG }</math>, <math>\vec{ FH }</math> und <math>\vec{ GH }</math> ein. Handelt es sich um eine zweidimensionale Figur oder um einen Körper? Benenne sie oder ihn. | |||
Zeile 26: | Zeile 27: | ||
[[Datei:Punkte im dreidimensionalen Koordinatensystem.jpg|rahmenlos|500x500px|Pfad-Folge-Verfahren]] |2= Tipp|3=Einklappen}} | [[Datei:Punkte im dreidimensionalen Koordinatensystem.jpg|rahmenlos|500x500px|Pfad-Folge-Verfahren]] |2= Tipp|3=Einklappen}} | ||
{{Lösung versteckt|1= Bei Aufgabenteil 2 handelt es sich um ein Parallelogram. Bei Aufgabenteil 3 bekommst du eine Pyramide heraus, die eine quadratische Grundfläche besitzt. Deine Lösung kann aufgrund einer anderen Skalierung der Achsen natürlich auch von der folgenden Lösung abweichen. | <nowiki>{{Lösung versteckt|1= Bei Aufgabenteil 2 handelt es sich um ein Parallelogram. Bei Aufgabenteil 3 bekommst du eine Pyramide heraus, die eine quadratische Grundfläche besitzt. Deine Lösung kann aufgrund einer anderen Skalierung der Achsen natürlich auch von der folgenden Lösung abweichen.</nowiki> | ||
{{Box|1= Aufgabe 3: Geometrische Objekte im Koordinatensystem|2= Die abgebildete Pyramide besitzt einen einen Eckpunkt im Nullpunkt <math> A(0|0|0)</math>. Welche Aussagen stimmen mit den abgebildeten Punkten überein? | {{Box|1= Aufgabe 3: Geometrische Objekte im Koordinatensystem|2= Die abgebildete Pyramide besitzt einen einen Eckpunkt im Nullpunkt <math> A(0|0|0)</math>. Welche Aussagen stimmen mit den abgebildeten Punkten überein? | ||
Zeile 50: | Zeile 51: | ||
<quiz display="simple"> | <quiz display="simple"> | ||
{Wo liegt der | {Wo liegt der Spitze der Pyramide ?} | ||
+ Der Scheitelpunkt liegt bei <math> S (2{,}5|2{,}5|6) </math>. | + Der Scheitelpunkt liegt bei <math> S (2{,}5|2{,}5|6) </math>. | ||
- Der Scheitelpunkt liegt bei <math> S (5|5|5) </math>. | - Der Scheitelpunkt liegt bei <math> S (5|5|5) </math>. |
Version vom 29. Mai 2021, 17:44 Uhr
Wiederholung von Punkten und Vektoren
{{Box|1= Aufgabe 1: Koordinatensysteme|2= Für diese Aufgabe benötigst du einen Bleistift, ein kariertes Blatt Papier und ein Geodreieck. Bearbeite die folgenden Aufgaben.
- Zeichne ein dreidimensionales Koordinatensystem. Wähle eine passende Skalierung anhand der angegebenen Punkte im Aufgabenteil 2 und 3.
- Zeichne die Punkte ,, und in das gezeichnete Koordinatensystem. Zeichne nun die Strecken , , und ein. Handelt es sich um eine zweidimensionale Figur oder um einen Körper? Benenne sie oder ihn.
- Nutze den Punkt aus Aufgabenteil 2. Füge die Punkte ,, und . Zeichne nun die Strecken ,, , , , , und ein. Handelt es sich um eine zweidimensionale Figur oder um einen Körper? Benenne sie oder ihn.
Punkte in einem dreidimensionalen Koordinatensystem kannst du mithilfe eines "Pfad-Folge-Verfahren" genau bestimmen. Dabei geht man die durch die Punktkoordinaten angegeben Längeneinheiten in die Richtung der jeweiligen Achsen. Es entsteht einen Koordinatenzug. Das folgende Bild verdeutlicht das Verfahren.
{{Lösung versteckt|1= Bei Aufgabenteil 2 handelt es sich um ein Parallelogram. Bei Aufgabenteil 3 bekommst du eine Pyramide heraus, die eine quadratische Grundfläche besitzt. Deine Lösung kann aufgrund einer anderen Skalierung der Achsen natürlich auch von der folgenden Lösung abweichen.