Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen): Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 55: Zeile 55:
{{Box | Merke: Winkel berechnen zwischen Gerade und Ebene | Inhalt | Merksatz}}  
{{Box | Merke: Winkel berechnen zwischen Gerade und Ebene | Inhalt | Merksatz}}  


{{Box | Beispiel: Winkel berechnen zwischen Gerade und Ebene | Inhalt | Hervorhebung}}
{{Box | Beispiel: Winkel berechnen zwischen Gerade und Ebene | Inhalt | Hervorhebung1}}


{{Box | Aufgabe <Nummer>: <Name> | Inhalt | Arbeitsmethode}}   
{{Box | Aufgabe <Nummer>: <Name> | Inhalt | Arbeitsmethode}}   
Zeile 101: Zeile 101:
===&#x2B50;Berechnung des Winkels zwischen Ebene und Ebene===
===&#x2B50;Berechnung des Winkels zwischen Ebene und Ebene===


{{Box | Merke: Winkel berechnen zwischen zwei Ebenen | Inhalt | Merksatz}}  
{{Box | Merke: Winkel berechnen zwischen zwei Ebenen |  
Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Wie in Abbildung ... zu sehen ist, kannst du dazu die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Betrachten wir die Normalenvektoren, so können wir ähnlich vorgehen, wie beim Berechnen des Winkels zwischen zwei Geraden.
Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in Kapitel ...| Merksatz}}  


{{Box | Beispiel: Winkel berechnen zwischen zwei Ebenen | Inhalt | Hervorhebung}}
{{Box | Merksatz: <Name> | Seien E und F zwei sich schneidende Ebenen mit den Normalenvektoren n und m. Der Schnittwinkel alpha zwischen E und F kann mit folgender Formel berechnet werden: | Merksatz}}
 
{{Box | Beispiel: Winkel berechnen zwischen zwei Ebenen | Inhalt | Hervorhebung1}}


{{Box | Aufgabe <Nummer>: Fehlerbeschreibung | Inhalt | Arbeitsmethode | Farbe={{Farbe|orange}} }}
{{Box | Aufgabe <Nummer>: Fehlerbeschreibung | Inhalt | Arbeitsmethode | Farbe={{Farbe|orange}} }}


{{Box | Aufgabe <Nummer>: Zeltwände | Inhalt | Arbeitsmethode}}
{{Box | Aufgabe <Nummer>: Zeltwände | Inhalt | Arbeitsmethode}}

Version vom 4. Mai 2021, 13:48 Uhr

Hier entsteht das Lernpfadkapitel "Lagebeziehungen und Winkel (Gerade und Ebene, 2 Ebenen)".

Bauarbeiter.jpg



Info

In diesem Lernpfadkapitel <Kurzbeschreibung des Kapitelziels>

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
  • Aufgaben und Kapitel, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!

Lagebeziehung Gerade-Ebene


Mögliche Lagebeziehungen zwischen Gerade und Ebene

Mögliche Lagebeziehung zwischen Gerade und Ebene

Es gibt drei Möglichkeiten wie eine Ebenen E und eine Gerade g im Raum zueinander liegen können:

  • Die Gerade g liegt in der Ebene E.
  • Die Gerade g liegt parallel zur Ebene E.
    Parallele Ebenen.png
  • Die Gerade g schneidet die Ebene E.
    Schnittgerade von zwei Ebenen.png

Für die Lage einer Gerade g zu einer Ebene E sind 3 Fälle möglich:

  • Die Gerade g liegt in der Ebene E. Lagebeziehung Gerade Ebene LiegtIn2.png
  • Die Gerade g liegt parallel zur Ebene E. Lagebeziehung Gerade Ebene Parallel1.pngDie Gerade g und die Ebene E schneiden sich.


Untersuchung der Lagebeziehung

Vorgehen


Beispiel (Ebene in Parameterform)

Übungsaufgaben (Learning App)

Beispiel (Ebene in Koordinatenform)

Übungsaufgaben

⭐Berechnung des Winkels zwischen Gerade und Ebene

Merke: Winkel berechnen zwischen Gerade und Ebene
Inhalt


Beispiel: Winkel berechnen zwischen Gerade und Ebene
Inhalt


Aufgabe <Nummer>: <Name>
Inhalt


Aufgabe <Nummer>: Winkel gesucht
Inhalt

Lagebeziehung Ebene-Ebene

Basiswissen

Lagebeziehung zwischen Ebenen

Es gibt drei Möglichkeiten wie zwei Ebenen E und F im Raum zueinander liegen können:

  • E und F sind identisch
  • E und F liegen parallel zueinander
    Parallele Ebenen.png
  • E und F schneiden sich
    Schnittgerade von zwei Ebenen.png

Zur Untersuchung der Lagebeziehungen kann man die Ebenengleichungen der beiden Ebenen miteinander gleichsetzen. Mit der Lösung des daraus entstehenden LGS kann man dann Aussagen über die Lagebeziehung treffen:


Aufgabe: Ergebnisse interpretieren

Interpretiere die jeweilige Situation geometrisch.

a)

b)

c)


Aufgabe: Lagebeziehungen berechnen

Untersuche die Lagebeziehung der jeweiligen Ebenen.

a)

b)

c)


Aufgabe: Schnitt von zwei Zeltflächen

Die beiden Seitenflächen eines Zeltes liegen in den Ebenen und . Berechne die Geradengleichung der oberen Zeltkante.


⭐Berechnung des Winkels zwischen Ebene und Ebene

Merke: Winkel berechnen zwischen zwei Ebenen

Wenn sich zwei Ebenen schneiden, kann der Schnittwinkel bestimmt werden, den sie einschließen. Wie in Abbildung ... zu sehen ist, kannst du dazu die Normalenvektoren betrachten. Sie schließen denselben Winkel ein, wie die beiden Ebenen. Betrachten wir die Normalenvektoren, so können wir ähnlich vorgehen, wie beim Berechnen des Winkels zwischen zwei Geraden.

Um den Schnittwinkel zu berechnen, musst du zunächst die Normalenvektoren der Ebenen bestimmen. Wenn du nicht mehr genau weißt, wie das geht, schaue nochmal in Kapitel ...


Merksatz: <Name>
Seien E und F zwei sich schneidende Ebenen mit den Normalenvektoren n und m. Der Schnittwinkel alpha zwischen E und F kann mit folgender Formel berechnet werden:


Beispiel: Winkel berechnen zwischen zwei Ebenen
Inhalt


Aufgabe <Nummer>: Fehlerbeschreibung
Inhalt


Aufgabe <Nummer>: Zeltwände
Inhalt