Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Punkte und Vektoren im Raum: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 11: | Zeile 11: | ||
Wir wünschen dir viel Erfolg! | Wir wünschen dir viel Erfolg! | ||
|3=Kurzinfo}} | |3=Kurzinfo}} | ||
==Wiederholung von Punkten und Vektoren== | |||
{{Box | Erinnerung: Punkte und Ortsvektoren | {{Lösung versteckt|1= Jeder Punkt lässt sich durch den Vektor beschreiben, der den Ursprung mit dem Punkt verbindet, dem '''Ortsvektor'''. Bei Punkten werden die Koordinaten direkt an den Namen des Punktes geschrieben, der Name des Punktes wird immer groß geschrieben; bei Vektoren, also auch bei Ortsvektoren, werden die Koordinaten durch ein Gleichheitszeichen vom Namen des Vektors getrennt, der Name des Vektors wird manchmal mit einem Pfeil darüber versehen. | |||
Zum Punkt <math>A(1, 2, 3) </math> gehört also der Ortsvektor <math>\vec {A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} </math>. | 2=Infobox | 3=Einklappen}} | Merksatz}} | |||
{{Box | 1=Übung 5: Ortsvektoren | 2= {{LearningApp|width=100%|height=600px|app=5520634}} | 3=Arbeitsmethode}} | |||
{{Box | 1= Übung 7: Gerichtete Größen | 2= Gib das folgende Gesetz mithilfe von Vektoren an: Übt ein Körper A auf einen anderen Körper B eine Kraft aus, so wirkt eine gleich große, aber entgegen gerichtete Kraft von Körper B auf Körper A. | |||
Erläutere, inwiefern sich Kräfte durch Vektoren darstellen lassen. {{Lösung versteckt|1= <math>\vec {F}_{A \to B} = -\vec {F}_{B \to A}</math> | |||
Sowohl Kräfte als auch Vektoren sind durch eine Richtung und eine Größe gekennzeichnet. Im Fall von Vektoren heißt die Größe der "Betrag" oder die "Länge" des Vektors. Es handelt sich demnach bei beidem um gerichtete Größen.|2=Lösung|3=Einklappen}} | 3=Arbeitsmethode }} | |||
{{Box|1=Aufgabe 8 - Länge und Abstände von Vektoren|2= | {{Box|1=Aufgabe 8 - Länge und Abstände von Vektoren|2= |
Version vom 30. April 2021, 13:23 Uhr
Wiederholung von Punkten und Vektoren
Wir definieren zwei Rechenoperationen für Vektoren: das Bilden des Vielfachen und der Summe. Die Vektoraddition bezeichnet das bilden der Summe zweier Vektoren gleichen Typs, das heißt dass die beiden Vektoren gleich viele Komponenten haben. Man bildet die Summe, indem man die Einträge der Vektoren komponentenweise addiert. Wir können uns die Addition von Vektoren als ein „Aneinanderlegen“ von zwei Strecken von ggf. verschiedener Länge vorstellen. Nennen wir und Vektoren. Wir deuten diese als Pfeile und addieren sie, das heißt wir legen sie hintereinander, sodass der Anfang von und die „Spitze“ von übereinstimmen. Ein derartiges Verhalten von Pfeilen ist aus der Physik bekannt. Dort werden oftmals Kräfte und Geschwindigkeiten mit Pfeilen dargestellt. Man kann am Ende zur Addition sagen, dass das Bilden der Summe zweier Vektoren als Hintereinander-Ausführen der durch und dargestellten Verschiebungen gesehen werden kann.
Das Bilden des Vielfachen eines Vektors wird auch als Multiplikation mit einem Skalar bezeichnet. Wir nennen unseren Vektor wieder und das Skalar bezeichnen wir mit . Von jedem Vektor kann das -Fache gebildet werden, indem alle Komponenten von mit multipliziert werden. Ist so wird der „Pfeil“ von um den Faktor aufgeblasen (falls ) oder geschrumpft (falls ). Ist , so erhält der Pfeil, der um den Faktor aufgeblasen oder geschrumpft wird, noch eine Richtungsumkehrung und wird zum Gegenvektor.
Wir nennen zwei Vektoren kollinear (oder parallel), wenn einer der Vektoren ein Vielfaches des anderen ist. Mit anderen Worten: Wenn und zwei verschiedene Vektoren sind, so sind sie parallel/kollinear zueinander, falls ein Skalar existiert, sodass gilt: . Dabei ist es egal, ob die beiden Vektoren in unterschiedliche Richtungen zeigen oder nicht.