Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Abstände von Objekten im Raum: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 302: | Zeile 302: | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Überlege dir, wie man den Flächinhalt eines Dreiecks allgemein berechnet. Wie ändert sich die Höhe des Dreiecks, wenn man <math>A</math> verschiebt? | Überlege dir, wie man den Flächinhalt eines Dreiecks allgemein berechnet. Wie ändert sich die Höhe des Dreiecks, wenn man <math>A</math> verschiebt? | ||
|2=Tipp zu a)|3=Tipp zu a) verbergen}} | |2=Tipp zu a)anzeigen|3=Tipp zu a) verbergen}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 310: | Zeile 310: | ||
|2=Lösung zu a) anzeigen|3=Lösung zu a) verbergen}} | |2=Lösung zu a) anzeigen|3=Lösung zu a) verbergen}} | ||
'''b)'''Bestimme den Flächeninhalt des Dreicks <math>ABC</math>. | '''b)''' Bestimme den Flächeninhalt des Dreicks <math>ABC</math>. | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Überlege dir, welche Abstände du berechnen musst, um den Flächeninhalt bestimmen zu können. | Überlege dir, welche Abstände du berechnen musst, um den Flächeninhalt bestimmen zu können. | ||
|2=Tipp zu b)|3=Tipp zu b) verbergen}} | |2=Tipp zu b)anzeigen|3=Tipp zu b) verbergen}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Wir bestimmen zunächst die Länge <math>G</math> der Grundseite: | Wir bestimmen zunächst die Länge <math>G</math> der Grundseite: |
Version vom 29. April 2021, 15:43 Uhr
Motivation?
- ganz am Anfang, zur Motivation: 3 Situationen, zuordnen lassen, welche Punkt-Ebene, Punkt-Gerade usw. ist (mit Learning App), mit Bild
Abstand eines Punktes von einer Ebene
Das Lotfußpunktverfahren
Weitere Aufgaben:
- stumpf das Verfahren anwenden. Lösungsweg anzeigen lassen und Tipps (Aufgabe zum Wiederholen/Vertiefen/Üben)
- Janne: man hat Ebene und bestimmten Abstand. Jetzt Punkt bestimmen, der diesen Abstand hat (wie Pyramidenaufgabe)
- Janne: Modellierungsaufgabe (zb aus Diagnosetest oder woanders her)
Die Hesse´sche Normalenform
Um den Abstand zwischen einem Punkt und einer Ebene zu bestimmen, gibt es neben dem Lotverfahren auch die Möglichkeit, dies mit der Hesse´schen Normalenform zu berechnen. In diesem Kapitel lernst du, wie du die Normalenform aufstellst und sie zur Abstandsberechnung anwendest.
Falls du noch nicht genug hast, kannst du auch versuchen, die Aufgaben vom Lotfußpunktverfahren mit der Hesse´schen Normalenform zu lösen
Abstand eines Punktes von einer Geraden
Beispiel zu Verfahren (Schritte selbst sortieren in Learning App)
- Aufgaben 2-3 (Idee: auch mal was begründen/ vermuten/ argumentieren lassen)
Wenn es geht, GeoGebra einbauen!!!
Abstand zweier windschiefer Geraden
- Janne: Verfahen in richtige Reihenfolge bringen
- Janne: Merksatz
- Aufgaben 2 (Idee: auch mal was begründen/vermuten/ argumentieren lassen)
Wenn es geht, GeoGebra einbauen!!!
Gemischte Aufgaben
- auf Anfangsaufgabe zurückkommen
- 3 Aufgaben
Wenn es geht, GeoGebra einbauen!!!