Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Winkel und Skalarprodukt (Vektoren bzw. Geraden): Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 135: Zeile 135:
==Winkel==
==Winkel==
===Einführung===
===Einführung===
Kasten: Definition Winkel zwischen zwei Vektoren


Kasten: Satz, dass zwei Vektoren orthogonal sind, wenn das Skalarprodukt Null ist
{{Box|1=Definition Winkel zwischen zwei Vektoren
|2= Für die beiden Vektoren <math> \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} </math> und <math> \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} </math> ist das '''Skalarprodukt''' definiert als <math> \vec{u} \ast \vec{v} = u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3 </math>.
|3=Merksatz}}


Infokasten (versteckt): Sonderfälle 0 Grad, 180 Grad, 90 Grad
{{Box|1=Satz
|2= Zwei Vektoren sind orthogonal zueinander, wenn ihr Skalarprodukt Null ist.
|3=Merksatz}}
 
{{Lösung versteckt|1= "Orthogonal" bedeutet, dass die Vektoren im 90°-Winkel zueinander stehen.
|2= Tipp|3= Einklappen}}
 
{{Box|1=Satz "Sonderfälle"
|2= Neben dem Sonderfall der Orthogonalität gibt es noch zwei weitere:
Wenn φ = 0°, dann haben die beiden Vektoren die gleiche Richtung.
Wenn φ = 180°, dann haben die beiden Vektoren entgegengesetzte Richtungen.
|3=Merksatz}}


Grafik: https://www.geogebra.org/m/Y2zJ4hzS (hier kein Winkel angegeben) oder https://www.geogebra.org/m/nJzV8Euq#material/qcHvSSPD (hier keine Fläche angegeben, eher das hier)
Grafik: https://www.geogebra.org/m/Y2zJ4hzS (hier kein Winkel angegeben) oder https://www.geogebra.org/m/nJzV8Euq#material/qcHvSSPD (hier keine Fläche angegeben, eher das hier)

Version vom 28. April 2021, 13:10 Uhr

Info

In diesem Lernpfadkapitel beschäftigst du dich mit dem Skalarprodukt und dem Winkel zwischen zwei Vektoren beziehungsweise dem Winkel zwischen zwei Geraden. Du lernst, ...

Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen:

  • Mit Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit
  • und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Wir wünschen dir viel Erfolg!

Skalarprodukt

Einführung

Definition des Skalarprodukts
Für die beiden Vektoren und ist das Skalarprodukt definiert als .


Eigenschaften des Skalarprodukts

Für das Skalarprodukt gilt das...

  • Kommutativgesetz, das heißt es gilt .
  • Distributivgesetz, das heißt es gilt .
  • Assoziativgesetz, da heißt es gilt mit .


Video

Du hast immer noch keine genaue Vorstellung davon, wie du das Skalarprodukt zweier Vektoren berechnen kannst? Dann schaue dir das Video zum Thema Skalarprodukt an:


Übungen

Aufgabe 1: Das Skalarprodukt berechnen
Fokus Mathematik, Seite 222, Nr.1


Aufgabe 2: Terme umformen

Wenn du Terme zuerst umzuformen, bevor du das Skalarprodukt berechnest, sparst du dir eine Menge Aufwand.

Löse die Klammern auf und fasse sinnvoll zusammen. Notiere deine Ergebnisse und überprüfe sie anschließend mit den Lösungen. Für die Vektoren müssen in dieser Aufgabe keine Werte eingesetzt werden.

a)

b)

c)

d)

e)

Erinnere dich an die binomischen Formeln. Wenn du nicht mehr genau weißt, wie die binomischen Formeln lauten, dann schaue in Tipp 2.

Erste binomische Formel:

Zweite binomische Formel:

Dritte binomische Formel:

f)


Aufgabe 3: Multiplikation oder Skalarprodukt?

Enscheide in den folgenden Aufgaben, wann der Malpunkt für das Skalarprodukt und wann er für die Multiplkation von Zahlen steht. Die Reihenfolge der Antworten innerhalb einer Antwortmöglichkeit soll der Reihenfolge der Malpunkte innerhalb der Aufgabe entsprechen.

1

Skalarprodukt
Multiplikation

2

Skalarprodukt
Multiplikation

3

Skalarprodukt
Multiplikation

4

Skalarprodukt
Multiplikation

5

Skalarprodukt
Multiplikation

6

Skalarproduk/Multiplikation/Multiplikation
Skalarprodukt/Multiplikation/Skalarprodukt
Multiplikation/Multiplikation/Multiplikation
Skalarprodukt/Skalarprodukt/Skalarprodukt
Multiplikation/Skalarprodukt/Skalarprodukt
Multiplikation/Multiplikation/Multiplikation

7

Multiplikation/Multiplikation
Skalarprodukt/Skalarprodukt
Multiplikation/Skalarprodukt
Skalarprodukt/Multiplikation

8

Multiplikation/Multiplikation
Skalarprodukt/Skalarprodukt
Multiplikation/Skalarprodukt
Skalarprodukt/Multiplikation


Bei der Multiplikation von zwei reellen Zahlen erhälst du wieder eine reelle Zahl. Das Produkt von zwei Vektoren liefert jedoch nicht einen Vektor, sondern eine reelle Zahl. Diese ist genau durch das Skalarprodukt definiert.

Winkel

Einführung

Definition Winkel zwischen zwei Vektoren
Für die beiden Vektoren und ist das Skalarprodukt definiert als .


Satz
Zwei Vektoren sind orthogonal zueinander, wenn ihr Skalarprodukt Null ist.
"Orthogonal" bedeutet, dass die Vektoren im 90°-Winkel zueinander stehen.


Satz "Sonderfälle"

Neben dem Sonderfall der Orthogonalität gibt es noch zwei weitere: Wenn φ = 0°, dann haben die beiden Vektoren die gleiche Richtung.

Wenn φ = 180°, dann haben die beiden Vektoren entgegengesetzte Richtungen.

Grafik: https://www.geogebra.org/m/Y2zJ4hzS (hier kein Winkel angegeben) oder https://www.geogebra.org/m/nJzV8Euq#material/qcHvSSPD (hier keine Fläche angegeben, eher das hier)

--> Aufgabe: Achte darauf, wie sich das Skalarprodukt ändert, wenn die Länge eines Vektors verändert wird

Tipp (versteckt): Das Skalarprodukt ändert sich nicht, wenn die Länge eines (oder beider) Vektoren variiert wird

Infobox: Die Länge eines Vektors berechnet man so und so. Wenn du darüber noch mehr wissen möchtest, schaue dir Lernpfadkapitel xy an.

versteckt: Video zu Winkel zwischen Vektoren (SimpleClub)

Übungen

Winkel zwischen zwei Vektoren

Aufgabe 4: stumpfes Winkel ausrechnen

Aufgabe 5: Orthogonalität: https://learningapps.org/2695651

Aufgabe 6: Bestimmung fehlender Koordinaten, sodass die Vektoren a, b, c paarweise orthogonal zueinander sind.

Aufgabe 7: räumliches Vorstellungsvermögen, Frage nach Orthogonalität in 2D und 3D (S. 227, Nr. 47, Fokus Mathematik)

(Knobelaufgabe: Frage nach der Orthogonalität der Zeiger der Uhr???)

Winkel zwischen zwei Geraden