Digitale Werkzeuge in der Schule/Unterwegs in 3-D – Punkte, Vektoren, Geraden und Ebenen im Raum/Geraden im Raum: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Box|Info|In diesem Lernpfadkapitel beschäftigst du dich mit '''Geraden im Raum'''. | |||
Du lernst, Geraden im Raum durch Vektoren zu beschreiben, mit der Parameterdarstellung und Spurpunkten umzugehen, die Lagebeziehung zwischen Geraden zu bestimmen, Geradenscharen und vieles mehr. | |||
Dazu haben wir für dich Aufgaben in verschiedenen Schwierigkeitsstufen: | |||
* Mit Aufgaben, die <span style="color: #F19E4F"> '''orange''' </span> gefärbt sind, kannst du <span style="color:#F19E4F">'''grundlegende Kompetenzen'''</span> wiederholen und vertiefen. | |||
* Aufgaben in <span style="color: #5E43A5"> '''blauer''' </span> Farbe sind Aufgaben <span style="color: #5E43A5">'''mittlerer Schwierigkeit'''</span> | |||
* und Aufgaben mit <span style="color: #89C64A"> '''grünem''' </span> Streifen sind <span style="color: #89C64A">'''Knobelaufgaben'''</span>. | |||
Wir wünschen dir viel Erfolg!|Kurzinfo | |||
}} | |||
==Einführung== | ==Einführung== |
Version vom 17. April 2021, 09:42 Uhr
Einführung
Parameterdarstellung einer Geraden
Lagebeziehungen von Geraden
Im Folgenden wollen wir betrachten, wie verschiedene Geraden zueinander im Raum liegen.
Definitionen
Wir unterscheiden die Lage zweier Geraden in identisch, parallel, geschnitten und windschief. Um die Lage zweier Geraden zu ermitteln, betrachtet man zunächst die Richtungsvektoren. Sind diese zueinander kollinear (sind Vielfache voneinander), so können die Geraden lediglich identisch oder parallel sein.
Um nun zu untersuchen, ob die Geraden parallel oder identisch sind, setzen wir einen Punkt der einen Geraden in die Geradengleichung der anderen Geraden ein. Liegt der Punkt der einen Geraden auf der anderen Geraden, sind die Geraden identisch. Andernfalls sind die Geraden echt parallel.
Aufgaben parallel und identisch
Sind die Richtungsvektoren nicht kollinear, so können die Geraden sich lediglich schneiden oder windschief zueinander sein.
Um nun zu untersuchen, ob sich die Geraden schneiden oder zueinader winschief sind, müssen wir schauen, ob sich ein Schnittpunkt berechnen lässt. Hierzu setzen wir die Geradengleichungen gleich und formen um. Erhalten wir einen Schnittpunkt S, so schneiden sich die Geraden im Punkt S. Andernfalls sind diese Geraden windschief zueinander.
Aufgaben geschnitten oder windschief