Digitale Werkzeuge in der Schule/Fit für VERA-8/Stochastik: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 832: | Zeile 832: | ||
Da der Würfel sechs Zahlen aufweist, beträgt die Wahrscheinlichkeit für jede einzelne Zahl <math>\tfrac{1}{6}</math> und somit gilt mit der Summenregel, da Markus drei der sechs Zahlen würfeln kann: | Da der Würfel sechs Zahlen aufweist, beträgt die Wahrscheinlichkeit für jede einzelne Zahl <math>\tfrac{1}{6}</math> und somit gilt mit der Summenregel, da Markus drei der sechs Zahlen würfeln kann: | ||
<math>P(\text{Markus würfelt eine | <math>P(\text{Markus würfelt eine 1, 2 oder 3})=\tfrac{1}{6}+\tfrac{1}{6}+\tfrac{1}{6}=\tfrac{3}{6}=\tfrac{1}{2}</math> | ||
Zeile 839: | Zeile 839: | ||
Da Julia nur zwei der sechs Zahlen würfeln kann, gilt: | Da Julia nur zwei der sechs Zahlen würfeln kann, gilt: | ||
<math>P(\text{Julia würfelt eine | <math>P(\text{Julia würfelt eine 5 oder 6})=\tfrac{1}{6}+\tfrac{1}{6}=\tfrac{2}{6}=\tfrac{1}{3}</math> | ||
Zeile 850: | Zeile 850: | ||
Dann kann Julia mit den Zahlen 4, 5 und 6 beim darauffolgenden Zug ins Haus kommen. | Dann kann Julia mit den Zahlen 4, 5 und 6 beim darauffolgenden Zug ins Haus kommen. | ||
<math>P(\text{Julia würfelt eine | <math>P(\text{Julia würfelt eine 4, 5 oder 6})=\tfrac{1}{6}+\tfrac{1}{6}+\tfrac{1}{6}=3 \cdot\tfrac{1}{6}=\tfrac{3}{6}=\tfrac{1}{2}</math> | ||
Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | ||
Zeile 858: | Zeile 858: | ||
Dann kann Julia mit den Zahlen 3, 4 und 5 beim darauffolgenden Zug ins Haus kommen: | Dann kann Julia mit den Zahlen 3, 4 und 5 beim darauffolgenden Zug ins Haus kommen: | ||
<math>P(\text{Julia würfelt eine | <math>P(\text{Julia würfelt eine 3, 4 oder 5})=3 \cdot\tfrac{1}{6}=\tfrac{1}{2}</math> | ||
Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | ||
Zeile 866: | Zeile 866: | ||
Dann kann Julia mit den Zahlen 2, 3 und 4 beim darauffolgenden Zug ins Haus kommen: | Dann kann Julia mit den Zahlen 2, 3 und 4 beim darauffolgenden Zug ins Haus kommen: | ||
<math>P(\text{Julia würfelt eine | <math>P(\text{Julia würfelt eine 2, 3 oder 4})=3 \cdot\tfrac{1}{6}=\tfrac{1}{2}</math> | ||
Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | ||
Zeile 874: | Zeile 874: | ||
Dann kann Julia mit den Zahlen 1, 2 und 3 beim darauffolgenden Zug ins Haus kommen: | Dann kann Julia mit den Zahlen 1, 2 und 3 beim darauffolgenden Zug ins Haus kommen: | ||
<math>P(\text{Julia würfelt eine | <math>P(\text{Julia würfelt eine 1, 2 oder 3})=3 \cdot\tfrac{1}{6}=\tfrac{1}{2}</math> | ||
Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. | Die Wahrscheinlichkeit beim nächsten Zug ins Haus zu kommen beträgt dann sowohl bei Markus als auch bei Julia <math>\tfrac{1}{2}</math>. |
Version vom 30. November 2020, 18:39 Uhr
Absolute und relative Häufigkeit
Zufallsexperimente
Laplace-Experimente