Digitale Werkzeuge in der Schule/Fit für VERA-8/Terme: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 20: Zeile 20:
{{Lösung versteckt|1=10x+⅜y+z|2=Lösung|3=Lösung ausblenden}}
{{Lösung versteckt|1=10x+⅜y+z|2=Lösung|3=Lösung ausblenden}}


{{Lösung versteckt|4x-(¼y-(5x+3z)-(x+⅝y-2z))
{{Lösung versteckt|1=4x-(¼y-(5x+3z)-(x+⅝y-2z))
= 4x-(¼y-5x-3z-x-⅝y+2z)
= 4x-(¼y-5x-3z-x-⅝y+2z)
= 4x-¼y+5x+3z+x+⅝y-2z
= 4x-¼y+5x+3z+x+⅝y-2z
= 4x+5x+x-¼y+⅝y+3z-2z
= 4x+5x+x-¼y+⅝y+3z-2z
= 4x+5x+x-2/8y+⅝y+3z-2z
= 4x+5x+x-2/8y+⅝y+3z-2z
=10x+⅜y+z |2=Lösuungsweg|3=Lösungsweg einklappen}}
=10x+⅜y+z |2=Lösungsweg|3=Lösungsweg einklappen}}


{{LearningApp|width=100%|height=500px|app=1704712}}
{{LearningApp|width=100%|height=500px|app=1704712}}

Version vom 14. November 2020, 19:09 Uhr

Info

In diesem Lernpfadkapitel lernst du Grundlagen über Terme und binomische Formeln kennen. Kurzbeschreibung des Aufbaus.Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
Viel Erfolg!

1) Terme zusammenfassen

Einführung

Wie kann ich Terme zusammenfassen?
Rechenregeln
Merksatz


Aufgabe 1:
Fasse den folgenden Term zusammen: 
4x-(¼y-(5x+3z)-(x+⅝y-2z))
Zuerst musst du die Klammern auflösen, dann die Summanden nach ihren Variablen ordnen. Danach musst du noch die Brüche gleichnamig machen um danach alles zusammenfassen zu können.
10x+⅜y+z

{{Lösung versteckt|1=4x-(¼y-(5x+3z)-(x+⅝y-2z)) = 4x-(¼y-5x-3z-x-⅝y+2z) = 4x-¼y+5x+3z+x+⅝y-2z = 4x+5x+x-¼y+⅝y+3z-2z = 4x+5x+x-2/8y+⅝y+3z-2z =10x+⅜y+z |2=Lösungsweg|3=Lösungsweg einklappen}}



2) Terme ausmultiplizieren und faktorisieren

Einführung

3) Binomische Formeln

Einführung

Was sind die binomischen Formeln?
Definition
Merksatz
Herleitung der binomischen Formeln

Bei der Herleitung der binomischen Formeln werden die Terme in den Klammern ausmultipliziert.

Übung: Binomische Formeln herleiten
Versuche, die erste binomische Formel in deinem Heft rechnerisch herzuleiten.
Beginne mit dem Ausgangsterm (a+b)² und schreibe die Potenz wiefolgt aus: (a+b)(a+b). Dies kannst du nun nach den bekannten Regeln ausmultiplizieren.
(a+b)² = (a+b)(a+b) = aa+ab+ba+bb = a²+2ab+b²
Herleitung über Flächen von Quadraten
GeoGebra

Aufgabenteil

Aufgabe 1:
...
Aufgabe 2:
...
Aufgabe 3:
...