Digitale Werkzeuge in der Schule/Ableitungen üben und vertiefen/Die Steigung in einem Punkt - die Ableitung als Tangentensteigung: Unterschied zwischen den Versionen
Main>Christopher WWU |
Main>Christopher WWU |
||
| Zeile 98: | Zeile 98: | ||
</popup> | </popup> | ||
<popup name="Lösung a)"> | <popup name="Lösung a)"> | ||
Version vom 6. November 2017, 20:05 Uhr
Inhaltsübersicht
a) Unterscheidung Tangente, Sekante und Normale - Aufgabe 1
b) Zuordnungsaufgaben bezüglich der Tangentensteigung - Aufgabe 2, 3, 4 und 5
c) Untersuchung einer Funktion - Aufgabe 6, 7, 8 und 9
Aufgabe 1: Kannst du die Begriffe unterscheiden?
a) Unterscheidung Tangente, Sekante und Normale
b) Zuordnungsaufgaben bezüglich der Tangentensteigung
Aufgabe 2: Ordne die jeweilige Steigung den entsprechenden Punkten zu
Aufgabe 3: Die Steigung der Tangente in einem x-Wert
Aufgabe 4: Wahr oder Falsch?
Aufgabe 5: Memory. Wie fit bist du beim Behalten von Graphen und einer Steigung in einem Punkt?
c) Untersuchung einer Funktion
Aufgabe 6: Steigung und Koordinaten ablesen
Aufgabe 7: Raupenfahrt
<popup name="Lösung"> Die Steigfähigkeit der Raupe liegt mit 76% über der Steigung von 75%. </popup>
*Aufgabe 8: Kann es in einem Punkt einer Funktion zwei oder mehr Tangenten geben?!
Luis und Marie sind sich uneinig. Beide schauen sich den untenstehenden Graphen an.
Luis sagt: "Wenn ich mir die Steigung im Punkt P(6|6)anschauen, sehe ich zwei Tangenten."
Marie entgegnet: "Also ich sehe da überhaupt keine Tangente. Da kann gar keine sein!"
Error: www.geogebra.org is not an authorized iframe site.
a) Überleg dir, welche zwei Tangenten Luis meint. Kannst du Luis` Aussage begründen? Welche Tangente würdest du einzeichnen?
<popup name="Hinweis zu a)">
Hast du dir wirklich Gedanken gemacht?
<popup name="Hinweis a)">
Luis betrachtet die Steigung im Punkt P(6|6). Dabei schaut er sich die Steigung links und rechts von P an.
</popup>
<popup name="Lösung a)">
</popup>
b) Zeichne zu den jeweiligen Intervallen ([0;6] und [6;16]) die Steigung ein. Wie verläuft die Steigung und was passiert im Punkt P(6|6)?
<popup name="Lösung c)"> Die Steigung verläuft im Intervall [0;6] und [6;16] linear. Jedoch gibt es im Punkt P(6|6) einen Sprung. Hier ist die neue Funktion also nicht zusammenhängend (Sprungstelle) und daher auch nicht differenzierbar.
</popup>
