Digitale Werkzeuge in der Schule/Ableitungen üben und vertiefen/Die Steigung in einem Punkt - die Ableitung als Tangentensteigung: Unterschied zwischen den Versionen
Main>Christopher WWU |
Main>Christopher WWU |
||
Zeile 75: | Zeile 75: | ||
<br/> | <br/> | ||
<iframe scrolling="no" title="Tangente(n) Punkt P(6|6)?" src="https://www.geogebra.org/material/iframe/id/UbVMmQJr/width/800/height/505/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/true/ctl/false" width="800px" height="505px" style="border:0px;"> </iframe> | <iframe scrolling="no" title="Tangente(n) Punkt P(6|6)?" src="https://www.geogebra.org/material/iframe/id/UbVMmQJr/width/800/height/505/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/true/ctl/false" width="800px" height="505px" style="border:0px;"> </iframe> | ||
Verbinde mit Hilfe einer Strecke die Punkte (0|0), (6|6); (6|6), (16|6). <br/> | Verbinde mit Hilfe einer Strecke die Punkte (0|0), (6|6); (6|6), (16|6). <br/> | ||
Zeile 93: | Zeile 89: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
<popup name="Lösung a)"> | <popup name="Lösung a)"> |
Version vom 6. November 2017, 18:49 Uhr
Inhaltsübersicht
a) Unterscheidung Tangente, Sekante und Normale - Aufgabe 1
b) Zuordnungsaufgaben bezüglich der Tangentensteigung - Aufgabe 2, 3, 4 und 5
c) Untersuchung einer Funktion - Aufgabe 6, 7, 8 und 9
Aufgabe 1: Kannst du die Begriffe unterscheiden?
a) Unterscheidung Tangente, Sekante und Normale
b) Zuordnungsaufgaben bezüglich der Tangentensteigung
Aufgabe 2: Ordne die jeweilige Steigung den entsprechenden Punkten zu
Aufgabe 3: Die Steigung der Tangente in einem x-Wert
Aufgabe 4: Wahr oder Falsch?
Aufgabe 5: Memory. Wie fit bist du beim Behalten von Graphen und einer Steigung in einem Punkt?
c) Untersuchung einer Funktion
Aufgabe 6: Steigung und Koordinaten ablesen
Aufgabe 7: Raupenfahrt
<popup name="Lösung"> Die Steigfähigkeit der Raupe liegt mit 76% über der Steigung von 75%. </popup>
Aufgabe 9: Kann es in einem Punkt einer Funktion zwei oder mehr Tangenten geben?!
Error: www.geogebra.org is not an authorized iframe site.
Verbinde mit Hilfe einer Strecke die Punkte (0|0), (6|6); (6|6), (16|6).
a) Welche Tangente(n) würdest du im Punkt P(6|6) einzeichnen?
b) Zeichne zu den jeweiligen Intervallen ([0;6] und [6;16]) die Steigung ein. Wie verläuft die Steigung und was passiert im Punkt P(6|6)?
<popup name="Lösung a)">
Im Punkt P(6|6) gibt es keine eindeutige Tangente. Je nachdem ob man die Steigung von links oder von rechts betrachte, erhält man eine andere, wie im Graph zu sehen ist.
</popup>
<popup name="Lösung b)">
Die Steigung verläuft im Intervall [0;6] und [6;16] linear. Jedoch gibt es
im Punkt P(6|6) einen Sprung. Hier ist die neue Funktion also nicht zusammenhängend (Sprungstelle) und daher auch nicht differenzierbar.
</popup>