Digitale Werkzeuge in der Schule/Ableitungen üben und vertiefen/Graphisches Ableiten - Die Ableitung als Funktionsdetektor: Unterschied zwischen den Versionen
Main>Miriam WWU Keine Bearbeitungszusammenfassung |
Main>Miriam WWU Keine Bearbeitungszusammenfassung |
||
Zeile 10: | Zeile 10: | ||
==<u>Aufgabe 1: Lückentext</u>== | ==<u>Aufgabe 1: Lückentext</u>== | ||
<br /> | <br />Um den Graphen größer zu sehen und somit die Werte besser zu erkennen, klickt den Graphen an. Wenn du die Aufgabe gelöst hast, klicke zur Kontrolle unten rechts auf den Haken. | ||
<iframe src="https://learningapps.org/watch?v=pvcv9fkun17" style="border:0px;width:100%;height: | <iframe src="https://learningapps.org/watch?v=pvcv9fkun17" style="border:0px;width:100%;height:800px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe> | ||
<br /><popup name="Hilfestellung 1">Die Steigung der Tangente entspricht der Steigung des Funktionsgraphen. | |||
</popup> | |||
<popup name="Hilfestellung 2">Besitzt der Funktionsgraph einen Hoch- oder Tiefpunkt, so hat die Tangente keine Steigung. | |||
</popup> | |||
<u>Aufgabe 2</u> | <u>Aufgabe 2</u> |
Version vom 9. November 2017, 11:36 Uhr
In diesem Lernpfad könnt ihr den Zusammenhang zwischen Funktionsgraph und Ableitung üben und vertiefen. Es steht das grafische Ableitung im Vordergrund. d.h. der Zusammenhang zwischen besonderen Punkten und Merkmalen der Funktion und der Ableitung. Dabei unterscheiden wir zwischen Förder- und Forderaufgaben.
Fällt dir das Thema leicht, konzentriere dich auf die Forderaufgaben (Aufgabe ) . Ansonsten wende dich den Förderaufgaben (Aufgabe ) zu.
Wenn du bei den Aufgaben Hilfe benötigst, findest du unter einigen Aufgaben Hilfestellungen. Diese kannst du anklicken.
Aufgabe 1: Lückentext
Um den Graphen größer zu sehen und somit die Werte besser zu erkennen, klickt den Graphen an. Wenn du die Aufgabe gelöst hast, klicke zur Kontrolle unten rechts auf den Haken.
<popup name="Hilfestellung 1">Die Steigung der Tangente entspricht der Steigung des Funktionsgraphen.
</popup>
<popup name="Hilfestellung 2">Besitzt der Funktionsgraph einen Hoch- oder Tiefpunkt, so hat die Tangente keine Steigung.
</popup>
Aufgabe 2
Aufgabe 3
Aufgabe 4
Aufgabe 5