Benutzer:Buss-Haskert/Vierecke und Dreiecke/Winkelsumme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 21: | Zeile 21: | ||
{{Lösung versteckt|<math>\gamma</math> und <math>\beta</math> sind Nebenwinkel, <math>\alpha</math> ist ein Scheitelwinkel zu 140°. Berechne <math>\delta</math> mit der Winkelsumme.|Tipp zu Nr. 4d|Verbergen}} | {{Lösung versteckt|<math>\gamma</math> und <math>\beta</math> sind Nebenwinkel, <math>\alpha</math> ist ein Scheitelwinkel zu 140°. Berechne <math>\delta</math> mit der Winkelsumme.|Tipp zu Nr. 4d|Verbergen}} | ||
{{Fortsetzung|weiter= | {{Fortsetzung|weiter=4) Umfang und Flächeninhalt|weiterlink=Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt}} |
Version vom 4. Oktober 2020, 16:18 Uhr
3) Winkelsumme im Viereck
In jedem Viereck beträgt die Winkelsumme 360°()
Also gilt: + + + = 360°().
Du kannst das Grad-Zeichen ° auf dem iPad eingeben, indem du lange auf die Ziffer 0 drückst.
Nutze Eigenschaften der Winkel im symmetrischen Trapez: Benachbarte Winkel sind gleich groß. Also ist = 45°
Zeichne ein symmetrisches Trapez. Wo muss der Winkel 110° liegen? Schau eventuell die Skizze von Nr. 2 an.
ist ein Nebenwinkel zu 50°. Nebenwinkel ergänzen sich zu 180°
ist ein Nebenwinkel zu 60°. Nebenwinkel ergänzen sich zu 180°
ist ein Nebenwinkel zu 100°, ist ein Nebenwinkel zu 80°, Nebenwinkel ergänzen sich zu 180°
und sind Nebenwinkel, ist ein Scheitelwinkel zu 140°. Berechne mit der Winkelsumme.