Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 106: | Zeile 106: | ||
{{Lösung versteckt|1= Die Geschwindigkeit wird als <math>\frac{Strecke}{Zeit}</math> berechnet. Die Geschwindigkeit steht also in dieser Aufgabe für die Änderungsrate. Überlege zuerst nach welcher Änderungsrate wird hier gefragt und wende die entsprechende Formel an. Die Begriffe Strecke oder Zeitabschnitt stehen für durchschnittliche Veränderungen, dagegen wird mit Begriffen wie "zum Zeitpunkt" oder "im Moment" lokale Änderungsrate bezeichnet.|2= Tipp|3=Tipp}} | {{Lösung versteckt|1= Die Geschwindigkeit wird als <math>\frac{Strecke}{Zeit}</math> berechnet. Die Geschwindigkeit steht also in dieser Aufgabe für die Änderungsrate. Überlege zuerst nach welcher Änderungsrate wird hier gefragt und wende die entsprechende Formel an. Die Begriffe Strecke oder Zeitabschnitt stehen für durchschnittliche Veränderungen, dagegen wird mit Begriffen wie "zum Zeitpunkt" oder "im Moment" lokale Änderungsrate bezeichnet.|2= Tipp|3=Tipp}} | ||
{{Lösung versteckt |1= Du fährst mit einer Geschwindigkeit von 10 m/s an deinem Freund vorbei. Im Teil a) hast du berechnet, dass du nach | {{Lösung versteckt |1= Du fährst mit einer Geschwindigkeit von 10 m/s an deinem Freund vorbei. Im Teil a) hast du berechnet, dass du nach 20 s an deinem Freund vorbei schlitterst. Es gibt nun 2 Möglichkeiten die Geschwindigkeit an dieser Stelle zu berechnen. {{Lösung versteckt|1= Berechne den Differentialquotient im <math>t= 20</math>. Die Formel dazu findest du im zweiten Merkkasten: | ||
<math>\lim_{h \to \ 0}\frac{f(x+h)-f(x)}{h}</math> | <math>\lim_{h \to \ 0}\frac{f(x+h)-f(x)}{h}</math> | ||
<math>\lim_{h \to \ 0}\frac{f(20+h)-f(20)}{h}</math> | <math>\lim_{h \to \ 0}\frac{f(20+h)-f(20)}{h}</math> | ||
<math>\lim_{h \to \ 0} \frac{\tfrac{1}{4}(20 + h)^2 - \tfrac{1}{4}\cdot 20^2}{h} = \lim_{h \to \ 0} \frac{100 + 10h + \tfrac{1}{4}h^2 - 100}{h} = \lim_{h \to \ 0} \frac{h (10 + \tfrac{1}{4}h)}{h} = \lim_{h \to \ 0} (10 + \tfrac{1}{4}h) = 10 \tfrac{m}{s}</math> Im letzten Rechenschritt | <math>\lim_{h \to \ 0} \frac{\tfrac{1}{4}(20 + h)^2 - \tfrac{1}{4}\cdot 20^2}{h} = \lim_{h \to \ 0} \frac{100 + 10h + \tfrac{1}{4}h^2 - 100}{h} = \lim_{h \to \ 0} \frac{h (10 + \tfrac{1}{4}h)}{h} = \lim_{h \to \ 0} (10 + \tfrac{1}{4}h) = 10 \tfrac{m}{s}</math> Im letzten Rechenschritt überlege, was mit dem Ausdruck <math>(10 + \tfrac{1}{4}h)</math> passiert wenn <math>h = 0</math> ist.|2=Lösungsweg 1|3= Lösungsweg 1}} {{Lösung versteckt|1= Wenn du bereits die Potenzregel zur Berechnung der Ableitungen kennst, so kannst du die momentane Geschwindigkeit als Wert der Ableitung an dieser Stelle (hier für <math>t=20</math>) berechnen: | ||
<math>f'(20)= \tfrac{1}{4}\cdot2\cdot20 = 10</math>|2=Lösungsweg 2|3=Lösungsweg 2}} |2= Lösung|3= Lösung}} | <math>f'(20)= \tfrac{1}{4}\cdot2\cdot20 = 10</math>|2=Lösungsweg 2|3=Lösungsweg 2}} |2= Lösung|3= Lösung}} | ||
Version vom 19. Mai 2020, 10:26 Uhr
Grundlegende Begriffe und Formeln
Aufgaben zum Wiederholen und Vertiefen
Mittelschwere Aufgaben
Knobelaufgaben