Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Wendepunkte: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Basiswissen Analysis | Eigenschaften von Funktionen und Funktionsuntersuchung
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 122: | Zeile 122: | ||
<math> g(x_{W_{1}}) = \frac{2}{25}\cdot 0^5-0^3+\frac{25}{8}\cdot 0=0 </math> | <math> g(x_{W_{1}}) = \frac{2}{25}\cdot 0^5-0^3+\frac{25}{8}\cdot 0=0 </math> | ||
<math> g(x_{W_{2}}) = \frac{2}{25}\cdot (\sqrt{\frac{15}{4}})^5-(\sqrt{\frac{15}{4}})^3+\frac{25}{8}\cdot \sqrt{\frac{15}{4}}\approx 0,97</math> | <math> g(x_{W_{2}}) = \frac{2}{25}\cdot (\sqrt{\frac{15}{4}})^5-(\sqrt{\frac{15}{4}})^3+\frac{25}{8}\cdot \sqrt{\frac{15}{4}}\approx 0{,}97</math> | ||
<math> g(x_{W_{3}}) = \frac{2}{25}\cdot (-\sqrt{\frac{15}{4}})^5-(-\sqrt{\frac{15}{4}})^3+\frac{25}{8}\cdot \sqrt{-\frac{15}{4}}\approx -0,97 </math> | <math> g(x_{W_{3}}) = \frac{2}{25}\cdot (-\sqrt{\frac{15}{4}})^5-(-\sqrt{\frac{15}{4}})^3+\frac{25}{8}\cdot \sqrt{-\frac{15}{4}}\approx -0{,}97 </math> | ||
| Rechenweg anzeigen |Rechenweg verbergen}} | | Rechenweg anzeigen |Rechenweg verbergen}} | ||
'''Lösung:''' An dem Punkt <math>(0/0)</math> liegt | '''Lösung:''' An dem Punkt <math>(0/0)</math> liegt ein Links-rechts-Wendepunkt vor und an den Punkten <math>(\sqrt{\frac{15}{4}}|0{,}97)</math> und <math>(-\sqrt{\frac{15}{4}}|-0{,}97)</math> liegen Rechts-links-Wendepunkte vor. | ||
| Lösung anzeigen |Lösung verbergen}} | | Lösung anzeigen |Lösung verbergen}} | ||
Zeile 138: | Zeile 138: | ||
Schaue dir hier die Rechnung an um den Lösungsweg schrittweise nachzuvollziehen! | Schaue dir hier die Rechnung an um den Lösungsweg schrittweise nachzuvollziehen! | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
<math> h'(x) = 3x^2-ax</math> | <math> h'(x) = 3x^2-ax</math> | ||
Zeile 145: | Zeile 143: | ||
<math> h'''(x) = 6</math> | <math> h'''(x) = 6</math> | ||
* '''Notwendiges Kriterium:''' <math>h''(x_W)=0</math> | |||
<math> h''(x_{W}) = 6x_W-a =0 </math> | <math> h''(x_{W}) = 6x_W-a =0 </math> | ||
<math>\Rightarrow x_{W}=\frac{a}{6} </math> | <math>\Rightarrow x_{W}=\frac{a}{6} </math> | ||
Zeile 176: | Zeile 177: | ||
|2= | |2= | ||
[[File:Colossos Heide Park Soltau Germany.jpg|thumb|Achterbahn]] | [[File:Colossos Heide Park Soltau Germany.jpg|thumb|Achterbahn]] | ||
Im Europa Park in Baden-Württemberg soll eine schnelle Achterbahn gebaut werden. Kurz vor Schluss soll die Bahn über zwei hohe Punkte fahren und dort die Höchstgeschwindigkeiten erreichen. Die Mitarbeiter des Parks haben eine Simulation der Achterbahn erstellt und haben somit die Geschwindigkeit der Achterbahn gegen die Zeit aufgenommen. Die Funktion <math>v(t)=\frac{1}{2}t^6-\frac{15}{2}t^4+30t^{2}+10 </math> (siehe Abbildung) beschreibt im Intervall [-3,3] sehr gut die Geschwindigkeit der Achterbahn am Ende der Fahrt. | Im Europa Park in Baden-Württemberg soll eine schnelle Achterbahn gebaut werden. Kurz vor Schluss soll die Bahn über zwei hohe Punkte fahren und dort die Höchstgeschwindigkeiten erreichen. Die Mitarbeiter des Parks haben eine Simulation der Achterbahn erstellt und haben somit die Geschwindigkeit der Achterbahn gegen die Zeit aufgenommen. Die Funktion <math>v(t)=\frac{1}{2}t^6-\frac{15}{2}t^4+30t^{2}+10 </math> (siehe Abbildung) beschreibt im Intervall <math>[-3,3]</math> sehr gut die Geschwindigkeit der Achterbahn am Ende der Fahrt. | ||
Zeile 186: | Zeile 187: | ||
Die Zeitpunkte, an denen die Achterbahn stark abbremst oder beschleunigt, sind sicherheitsrelevanten Momente der Fahrt. Zu diesen Zeitpunkten sollen deshalb besondere Sicherheitssysteme arbeiten. Zu welchen Zeitpunkten ist die Beschleunigung minimal bzw. maximal? '''Beachte:''' Es ist nur der '''Zeitpunkt''' gesucht, du musst also nicht den Funktionswert bzw. die Geschwindigkeit berechnen. Der letzte Schritt aus dem obigen Beispiel bleibt also aus. | |||
{{Lösung versteckt|Die Beschleunigung <math>a(t)</math> kann man | {{Lösung versteckt|Die Beschleunigung <math>a(t)</math> kann man berechnen, da sie der Ableitung der Geschwindigkeit entspricht also: <math>a(t)=v'(t)</math>. Die Geschwindigkeit ist angegeben. Was gilt für die Punkte, an denen die Beschleunigung maximal oder minimal ist? Lösung zu der Frage findest du in Tipp 2.| Tipp 1 anzeigen |Tipp verbergen}} | ||
{{Lösung versteckt|Zu dem Zeitpunkt <math>t_{W}</math>, an dem die Beschleunigung maximal bzw. minimal ist gilt: <math>a'(t_{W})=0</math>, da zu diesem Zeitpunkt die Beschleunigung eine Extremstelle und somit die Geschwindigkeit einen Wendepunkt aufweist. | {{Lösung versteckt|Zu dem Zeitpunkt <math>t_{W}</math>, an dem die Beschleunigung maximal bzw. minimal ist gilt: <math>a'(t_{W})=0</math>, da zu diesem Zeitpunkt die Beschleunigung eine Extremstelle und somit die Geschwindigkeit einen Wendepunkt aufweist. | ||
Hier soll also nur wieder der Wendepunkt berechnet werden. | Hier soll also nur wieder der Wendepunkt berechnet werden. Für weitere Tipps kannst du in der Aufgabe 2 und dem Beispiel schauen!| Tipp 2 anzeigen |Tipp verbergen}} | ||
{{Lösung versteckt|Eine Substitution:<math> t_{W}^2= z </math> ist zur | {{Lösung versteckt|Eine Substitution: <math> t_{W}^2= z </math> ist zur Berechnung der Nullstellen der zweiten Ableitung möglich!| Tipp 3 anzeigen |Tipp verbergen}} | ||
{{Lösung versteckt|Schaue dir hier die Rechnung an um den Lösungsweg schrittweise nachzuvollziehen! | {{Lösung versteckt|Schaue dir hier die Rechnung an um den Lösungsweg schrittweise nachzuvollziehen! | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
<math> v(t)=\frac{1}{2}t^6-\frac{15}{2}t^4+30t^{2}+10 </math> | <math> v(t)=\frac{1}{2}t^6-\frac{15}{2}t^4+30t^{2}+10 </math> | ||
Zeile 202: | Zeile 202: | ||
<math>v'''(t)=a''(t)=60t^3-180t </math> | <math>v'''(t)=a''(t)=60t^3-180t </math> | ||
<math>\Rightarrow 0=15z^2-90z+60</math> Die Gleichung | * '''Notwendiges Kriterium:''' <math>v''(t_{W})=a'(t_{W})=0</math>, wobei <math>a(t)</math> die Beschleunigung der Bahn beschreibt. | ||
<math>0=v''(t_{W})=a'(t_{W})=15t_{W}^4-90t_{W}^2+60</math> Substitution: <math> t_{W}^2= z </math> | |||
<math>\Rightarrow 0=15z^2-90z+60</math> Die Gleichung kann in die Form <math>x^2+px+q</math> gebracht werden, um die pq-Formel anzuwenden. | |||
<math>\Rightarrow 0=z^2-6z+4</math> pq-Formel anwenden mit <math>p=-6</math> und <math>q=4</math> | <math>\Rightarrow 0=z^2-6z+4</math> pq-Formel anwenden mit <math>p=-6</math> und <math>q=4</math> |