Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Wendepunkte: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Basiswissen Analysis | Eigenschaften von Funktionen und Funktionsuntersuchung
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 162: | Zeile 162: | ||
| Rechenweg anzeigen |Rechenweg verbergen}} | | Rechenweg anzeigen |Rechenweg verbergen}} | ||
'''Lösung:''' Die Rechts-links-Wendepunkt der Funktionsscharen liegen an den Punkten: <math>(\frac{a}{6} | '''Lösung:''' Die Rechts-links-Wendepunkt der Funktionsscharen liegen an den Punkten: <math>(\frac{a}{6}|-\frac{2}{6^3}a^3-a) </math>. | ||
| Lösung anzeigen |Lösung verbergen}} | | Lösung anzeigen |Lösung verbergen}} | ||
Zeile 183: | Zeile 183: | ||
An den Stellen, wo die Achterbahn stark abbremst oder beschleunigt, sind die wichtigsten Stellen der Fahrt. Zu diesen Zeitpunkten sollen deshalb besondere Sicherheitssysteme arbeiten. Berechne mit Hilfe der Funktion <math> v(t) </math>, zu welchen Zeitpunkten die Beschleunigung minimal bzw. maximal ist. '''Beachte:''' Es ist nur der '''Zeitpunkt''' du musst also nicht den Funktionswert bzw. die Geschwindigkeit berechnen, der letzte Schritt in unserem Beispiel bleibt also aus. | An den Stellen, wo die Achterbahn stark abbremst oder beschleunigt, sind die wichtigsten Stellen der Fahrt. Zu diesen Zeitpunkten sollen deshalb besondere Sicherheitssysteme arbeiten. Berechne mit Hilfe der Funktion <math> v(t) </math>, zu welchen Zeitpunkten die Beschleunigung minimal bzw. maximal ist. '''Beachte:''' Es ist nur der '''Zeitpunkt''' du musst also nicht den Funktionswert bzw. die Geschwindigkeit berechnen, der letzte Schritt in unserem Beispiel bleibt also aus. | ||
{{Lösung versteckt|Die Beschleunigung <math>a(t)</math> kann man ermitteln, da sie der Ableitung der Geschwindigkeit entspricht also: <math>a(t)=v'(t)</math>. Die Geschwindigkeit ist angegeben. Was gilt für die Punkte, wo die Beschleunigung maximal oder minimal ist? Lösung zu der Frage findest du in Tipp 2.| Tipp 1 anzeigen |Tipp verbergen}} | {{Lösung versteckt|Die Beschleunigung <math>a(t)</math> kann man ermitteln, da sie der Ableitung der Geschwindigkeit entspricht also: <math>a(t)=v'(t)</math>. Die Geschwindigkeit ist angegeben. Was gilt für die Punkte, wo die Beschleunigung maximal oder minimal ist? Lösung zu der Frage findest du in Tipp 2.| Tipp 1 anzeigen |Tipp verbergen}} | ||
{{Lösung versteckt|Zu dem Zeitpunkt <math>t_{W}</math> an dem die Beschleunigung maximal bzw. minimal ist gilt: <math>a'(t_{W})=0</math>, da zu diesem Zeitpunkt die Beschleunigung eine Extremstelle und somit die Geschwindigkeit einen Wendepunkt aufweist. | {{Lösung versteckt|Zu dem Zeitpunkt <math>t_{W}</math>, an dem die Beschleunigung maximal bzw. minimal ist gilt: <math>a'(t_{W})=0</math>, da zu diesem Zeitpunkt die Beschleunigung eine Extremstelle und somit die Geschwindigkeit einen Wendepunkt aufweist. | ||
Hier | Hier soll also nur wieder der Wendepunkt berechnet werden. Falls du noch mehr Hilfe brauchst, schau dir die Tipps von Aufgabe 2 und das Beispiel nochmal an!| Tipp 2 anzeigen |Tipp verbergen}} | ||
{{Lösung versteckt|Eine Substitution:<math> t_{W}^2= z </math> ist zur Lösung der Nullstellen der zweiten Ableitung notwendig!| Tipp 3 anzeigen |Tipp verbergen}} | {{Lösung versteckt|Eine Substitution:<math> t_{W}^2= z </math> ist zur Lösung der Nullstellen der zweiten Ableitung notwendig!| Tipp 3 anzeigen |Tipp verbergen}} | ||
{{Lösung versteckt|Schaue dir hier die Rechnung an um den Lösungsweg schrittweise nachzuvollziehen! | {{Lösung versteckt|Schaue dir hier die Rechnung an um den Lösungsweg schrittweise nachzuvollziehen! | ||
Zeile 226: | Zeile 226: | ||
| Rechenweg anzeigen |Rechenweg verbergen}} | | Rechenweg anzeigen |Rechenweg verbergen}} | ||
'''Lösung:''' Die Achterbahn bremst zu den Zeitpunkten <math> (3 + \sqrt {5}) | '''Lösung:''' Die Achterbahn bremst zu den Zeitpunkten <math> \sqrt{(3 + \sqrt {5})}s</math> und <math>-\sqrt{(3 - \sqrt {5})}s</math> am stärksten ab. Die Achterbahn beschleunigt zu den Zeitpunkten <math> -\sqrt{(3 + \sqrt {5})}s</math> und <math> \sqrt(3 - \sqrt {5})}s</math> am stärksten. | ||
| Lösung anzeigen |Lösung verbergen}} | | Lösung anzeigen |Lösung verbergen}} | ||