Digitale Werkzeuge in der Schule/Basiswissen Analysis/Eigenschaften von Funktionen und Funktionsuntersuchung/Wendepunkte: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
< Digitale Werkzeuge in der Schule | Basiswissen Analysis | Eigenschaften von Funktionen und Funktionsuntersuchung
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 176: | Zeile 176: | ||
An den Stellen, wo die Achterbahn stark abbremst oder beschleunigt sind die wichtigsten Stellen der Fahrt. Zu diesen Zeitpunkten sollen deshalb besondere Sicherheitssysteme arbeiten. | An den Stellen, wo die Achterbahn stark abbremst oder beschleunigt sind die wichtigsten Stellen der Fahrt. Zu diesen Zeitpunkten sollen deshalb besondere Sicherheitssysteme arbeiten. Berechne mit Hilfe der Funktion <math> v(t) </math> an, zu welchen Zeitpunkten die Beschleunigung minimal bzw. maximal ist. '''Beachte:''' Es ist nur der '''Zeitpunkt''' du musst also nicht den Funktionswert bzw. die Geschwindigkeit berechnen, der letzte Schritt in unserem Beispiel bleibt also aus. | ||
{{Lösung versteckt|Die Beschleunigung <math>a(t)</math> kann man ermittel, da sie der Ableitung der Geschwindigkeit entspricht also: <math>a(t)=v'(t)</math>. Die Geschwindigkeit ist angegeben. Was gilt für die Punkte, wo die Beschleunigung maximal oder minimal ist? Lösung zu der Frage findest du in Tipp 2.| Tipp 1 anzeigen |Tipp verbergen}} | {{Lösung versteckt|Die Beschleunigung <math>a(t)</math> kann man ermittel, da sie der Ableitung der Geschwindigkeit entspricht also: <math>a(t)=v'(t)</math>. Die Geschwindigkeit ist angegeben. Was gilt für die Punkte, wo die Beschleunigung maximal oder minimal ist? Lösung zu der Frage findest du in Tipp 2.| Tipp 1 anzeigen |Tipp verbergen}} | ||
{{Lösung versteckt|Zu dem Zeitpunkt <math>t_{W}</math> an dem die Beschleunigung maximal bzw. minimal ist gilt: <math>a'(t_{W})=0</math>, da zu diesem Zeitpunkt die Beschleunigung eine Extremstelle und somit die Geschwindigkeit einen Wendepunkt aufweist. | {{Lösung versteckt|Zu dem Zeitpunkt <math>t_{W}</math> an dem die Beschleunigung maximal bzw. minimal ist gilt: <math>a'(t_{W})=0</math>, da zu diesem Zeitpunkt die Beschleunigung eine Extremstelle und somit die Geschwindigkeit einen Wendepunkt aufweist. | ||
Hier muss also nur wieder der Wendepunkt berechnet werden. Falls du noch mehr Hilfe brauchst, schau dir die Tipps von Aufgabe 2 und das Beispiel nochmal an!| Tipp 2 anzeigen |Tipp verbergen}} | Hier muss also nur wieder der Wendepunkt berechnet werden. Falls du noch mehr Hilfe brauchst, schau dir die Tipps von Aufgabe 2 und das Beispiel nochmal an!| Tipp 2 anzeigen |Tipp verbergen}} | ||
{{Lösung versteckt|Eine Substitution:<math> t_{W}^2= z </math> ist zur Lösung der Nullstellen der zweiten Ableitung notwendig!| Tipp 3 anzeigen |Tipp verbergen}} | |||
{{Lösung versteckt|Schaue dir hier die Rechnung an um den Lösungsweg schrittweise nachzuvollziehen! | {{Lösung versteckt|Schaue dir hier die Rechnung an um den Lösungsweg schrittweise nachzuvollziehen! | ||
{{Lösung versteckt| | {{Lösung versteckt| | ||
Zeile 192: | Zeile 192: | ||
<math>v'''(t)=a''(t)=60t^3-180t </math> | <math>v'''(t)=a''(t)=60t^3-180t </math> | ||
<math>0=v''(t_{W})=a'(t_{W})=15t_{W}^4-90t_{W}^2+60</math> Substitution | <math>0=v''(t_{W})=a'(t_{W})=15t_{W}^4-90t_{W}^2+60</math> Substitution notwendig: <math> t_{W}^2= z </math> | ||
<math>\Rightarrow 0=15z^2-90z+60</math> Die Gleichung muss in die Form <math>x^2+px+q</math> gebracht werden, um die pq-Formel anzuwenden. | <math>\Rightarrow 0=15z^2-90z+60</math> Die Gleichung muss in die Form <math>x^2+px+q</math> gebracht werden, um die pq-Formel anzuwenden. | ||
Zeile 208: | Zeile 208: | ||
<math>\Rightarrow t_{W_{1}}=\sqrt{3 + \sqrt {5}}</math>, <math>\Rightarrow t_{W_{2}}=-\sqrt{3 + \sqrt {5}}</math>, <math>\Rightarrow t_{W_{3}}=\sqrt{3 - \sqrt {5}}</math> und <math>\Rightarrow t_{W_{4}}=-\sqrt{3 - \sqrt {5}}</math> | <math>\Rightarrow t_{W_{1}}=\sqrt{3 + \sqrt {5}}</math>, <math>\Rightarrow t_{W_{2}}=-\sqrt{3 + \sqrt {5}}</math>, <math>\Rightarrow t_{W_{3}}=\sqrt{3 - \sqrt {5}}</math> und <math>\Rightarrow t_{W_{4}}=-\sqrt{3 - \sqrt {5}}</math> | ||
* Hinreichendes Kriterium: <math> | |||
<math>f'''( | * Hinreichendes Kriterium: <math>v'''(t_W)=a''(t_{W})\neq 0</math> | ||
<math>f'''(t_{W_{1}})=-6</math> | |||
<math>f'''(t_{W_{2}})=-6</math> | |||
<math>f'''(t_{W_{3}})=-6</math> | |||
<math>f'''(t_{W_{4}})=-6</math> | |||
<math>\Rightarrow</math>an <math>x_{W1}</math> liegt eine Recht-links-Wendestelle, an <math> {x_W2}</math> eine Links-rechts-Wendestelle vor und an <math> {x_W2}</math> eine Links-rechts-Wendestelle vor. | <math>\Rightarrow</math>an <math>x_{W1}</math> liegt eine Recht-links-Wendestelle, an <math> {x_W2}</math> eine Links-rechts-Wendestelle vor und an <math> {x_W2}</math> eine Links-rechts-Wendestelle vor. |