Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 92: | Zeile 92: | ||
In dem Applet ist der Graph der Funktion f(x) = 0,1·x² + 1 dargestellt. | In dem Applet ist der Graph der Funktion f(x) = 0,1·x² + 1 dargestellt. | ||
* '''''Verändere mithilfe des Schiebereglers für Δx den Abstand zwischen den Punkten A und B. | * '''''Verändere mithilfe des Schiebereglers für Δx den Abstand zwischen den Punkten A und B.''''' | ||
* Notiere für Δx = 3,5 ; 3,0 ; 2,5; 2,0; 1,5; 1,2; 1,1 und 0,5 die Steigung k der Sekanten durch die Punkte A und B. | * '''''Notiere für Δx = 3,5 ; 3,0 ; 2,5; 2,0; 1,5; 1,2; 1,1 und 0,5 die Steigung k der Sekanten durch die Punkte A und B.''''' | ||
* Welche Steigung k der Tangente im Punkt A lässt sich als Grenzwert der Sekantensteigungen vermuten?''''' | * '''''Welche Steigung k der Tangente im Punkt A lässt sich als Grenzwert der Sekantensteigungen vermuten?''''' | ||
{{Lösung versteckt|1 = um die Vermutung zu überprüfen, schiebe den Regler so weit, dass Δx=0 ist|2=Hinweis|3=Hinweis}} | {{Lösung versteckt|1 = um die Vermutung zu überprüfen, schiebe den Regler so weit, dass Δx=0 ist|2=Hinweis|3=Hinweis}} | ||
Zeile 108: | Zeile 108: | ||
Im kalten Winter unter idealen Bedingugnen (keine Reibung, kein hektisches Lenken und kein unnötiges Bremsen) schlitterst Du einen Hang mit 5% Gefälle hinab. | Im kalten Winter unter idealen Bedingugnen (keine Reibung, kein hektisches Lenken und kein unnötiges Bremsen) schlitterst Du einen Hang mit 5% Gefälle hinab. | ||
Der von deinem Schlitten zurückgelegter Weg wird annährend durch den Term | Der von deinem Schlitten zurückgelegter Weg wird annährend durch den Term | ||
<math>w(t) = \tfrac{1}{4}t^2</math> beschrieben. Dabei steht t für die Zeit nach dem Start in Sekunden und w(t) für die seit dem Start zurückgelegte Strecke in Metern. | <math>w(t) = \tfrac{1}{4}t^2</math> beschrieben. Dabei steht t für die Zeit nach dem Start in Sekunden und w(t) für die seit dem Start zurückgelegte Strecke in Metern. | ||
Zeile 126: | Zeile 127: | ||
Den Wert t = -20 können wir in dem Sachzusammenhang verwerfen (Du sitzt schließlich auf dem Schlitten, nicht in der Zeitmaschine), also triffst Du nach 20s den Baum.|2= Lösung|3= Lösung}} | Den Wert t = -20 können wir in dem Sachzusammenhang verwerfen (Du sitzt schließlich auf dem Schlitten, nicht in der Zeitmaschine), also triffst Du nach 20s den Baum.|2= Lösung|3= Lösung}} | ||
'''''b)Welche Geschwindgkeit hat dein Schlitten zum Zeitpunkt des Aufpralls?''''' | '''''b) Welche Geschwindgkeit hat dein Schlitten zum Zeitpunkt des Aufpralls?''''' | ||
{{Lösung versteckt|1= Die Geschwindigkeit wird als <math>\frac{Strecke}{Zeit}</math> berechnet. Die Geschwindigkeit steht also in dieser Aufgabe für die Änderungsrate. Überlege zuerst nach welcher Änderungsrate wird hier gefragt und wende entsprechende Formel an. Wenn Du Dir nicht sicher bist, schau Dir die Beispiele in den Infoboxen an|2= Hinweis|3=Hinweis}} | {{Lösung versteckt|1= Die Geschwindigkeit wird als <math>\frac{Strecke}{Zeit}</math> berechnet. Die Geschwindigkeit steht also in dieser Aufgabe für die Änderungsrate. Überlege zuerst nach welcher Änderungsrate wird hier gefragt und wende entsprechende Formel an. Wenn Du Dir nicht sicher bist, schau Dir die Beispiele in den Infoboxen an|2= Hinweis|3=Hinweis}} | ||
Zeile 152: | Zeile 153: | ||
*<math>h(x)=x^3-1</math> und der Punkt '''''(1; h(1))''''' | *<math>h(x)=x^3-1</math> und der Punkt '''''(1; h(1))''''' | ||
'''a)''' Zeichne die Graphen der Funktionen | '''a)''' '''''Zeichne die Graphen der Funktionen f(x) und h(x) sowie nach Augenmaß die Tangenten in den angegebenen Punkten. Bestimme die Steigung der Funktion im gegebenen Punkt durch Ablesen der Tangentensteigung. ''''' | ||
{{Lösung versteckt|1 = Erinnerst Du dich, dass die Steigung der Funktion in einem Punkt mit der Steigung der Tangente in diesem Punkt übereinstimmt? Für das Ablesen der Tangentensteigung suche Dir am besten ein Intervall zwischen 2 benachbarten ganzen Zahlen, deren Funktionswerte gut abzulesen sind. Steigungsdreieck ist hier das Stichwort. |2=Tipp|3=Tipp}} | {{Lösung versteckt|1 = Erinnerst Du dich, dass die Steigung der Funktion in einem Punkt mit der Steigung der Tangente in diesem Punkt übereinstimmt? Für das Ablesen der Tangentensteigung suche Dir am besten ein Intervall zwischen 2 benachbarten ganzen Zahlen, deren Funktionswerte gut abzulesen sind. Steigungsdreieck ist hier das Stichwort. |2=Tipp|3=Tipp}} | ||
Zeile 158: | Zeile 159: | ||
{{Lösung versteckt|1 = Die Tangente der Funktion f(x) hat an der vorgegebenen Stelle Steigung m=2. Die Tangente der Funktion h(x) hat an der Stelle 1 die Steigung m=3 Wie komme ich zu meiner Lösung? Beide Steigungen sind am einfachsten im Intervall [1; 2] abzulesen|2=Lösung|3=Lösung}} | {{Lösung versteckt|1 = Die Tangente der Funktion f(x) hat an der vorgegebenen Stelle Steigung m=2. Die Tangente der Funktion h(x) hat an der Stelle 1 die Steigung m=3 Wie komme ich zu meiner Lösung? Beide Steigungen sind am einfachsten im Intervall [1; 2] abzulesen|2=Lösung|3=Lösung}} | ||
'''b)''' Bestimme rechnerisch die lokale Änderungsrate der jeweiligen Funktion im vorgegebenen Punkt. Vergleiche Deine Ergebnisse mit den Ergebnissen aus Teil a). | '''b)''' '''''Bestimme rechnerisch die lokale Änderungsrate der jeweiligen Funktion im vorgegebenen Punkt. Vergleiche Deine Ergebnisse mit den Ergebnissen aus Teil a).''''' | ||
{{Lösung versteckt|1 = Die lokale Änderungsrate im vorgegebenem Punkt berechnest Du am besten mit dieser Formel: <math>f'(x)=\lim_{h \to \ 0}\frac{f(x+h)-f(x)}{h}</math>. | {{Lösung versteckt|1 = Die lokale Änderungsrate im vorgegebenem Punkt berechnest Du am besten mit dieser Formel: <math>f'(x)=\lim_{h \to \ 0}\frac{f(x+h)-f(x)}{h}</math>. | ||
Hier entspricht die Steigung dem Wert der Ableitung an der vorgegebenen Stelle. | Hier entspricht die Steigung dem Wert der Ableitung an der vorgegebenen Stelle. | ||
Zeile 223: | Zeile 224: | ||
Ein Teil der Achterbahn lässt sich durch den Graphen der Funktion: <math>f(x) = \tfrac{1}{4}x^2 + 1</math> beschreiben. | Ein Teil der Achterbahn lässt sich durch den Graphen der Funktion: <math>f(x) = \tfrac{1}{4}x^2 + 1</math> beschreiben. | ||
'''a)''' Zeichne den Graphen der Funktion '''''f(x)''''' .Vervollständige folgende Tabelle, in dem Du in den angegebenen Punkten nach Augenmaß Tangenten zeichnest und deren Steigungen m durch Ablesen bestimmst. | '''a)''' '''''Zeichne den Graphen der Funktion '''''f(x)''''' .Vervollständige folgende Tabelle, in dem Du in den angegebenen Punkten nach Augenmaß Tangenten zeichnest und deren Steigungen m durch Ablesen bestimmst. | ||
''''' | |||
[[Datei:Tabelle 1.png|550 px|zentriert|rahmenlos|mini]] | [[Datei:Tabelle 1.png|550 px|zentriert|rahmenlos|mini]] | ||
Zeile 232: | Zeile 233: | ||
'''b)''' Da es zu jedem Punkt nur eine Tangente gibt, so ist die Zuordnung <math>m \longmapsto x</math> eine Funktion m(x). Betrachte die Wertepaare in der Tabelle Teil a). Stelle die Gleichung der Funktion auf und zeichne diese in dein Koordinatensystem. | '''b)''' Da es zu jedem Punkt nur eine Tangente gibt, so ist die Zuordnung <math>m \longmapsto x</math> eine Funktion m(x). Betrachte die Wertepaare in der Tabelle Teil a). '''''Stelle die Gleichung der Funktion auf und zeichne diese in dein Koordinatensystem. | ||
''''' | |||
{{Lösung versteckt|1 = Die Funktionsgleichung lautet: <math>m(x) = \tfrac{1}{2} x</math>. Denn <math>-1 = 0,5 \times (-2) oder 1,5 = 0,5\times 3</math> Das Verfahren, dass Du hier geübt hast nennt man graphisches Differenzieren und die Funktion ist die Ableitungsfunktion von f(x). Im Teil c) kannst Du diese Behauptung rechnerisch überprüfen|2= Lösung|3=Lösung}} | {{Lösung versteckt|1 = Die Funktionsgleichung lautet: <math>m(x) = \tfrac{1}{2} x</math>. Denn <math>-1 = 0,5 \times (-2) oder 1,5 = 0,5\times 3</math> Das Verfahren, dass Du hier geübt hast nennt man graphisches Differenzieren und die Funktion ist die Ableitungsfunktion von f(x). Im Teil c) kannst Du diese Behauptung rechnerisch überprüfen|2= Lösung|3=Lösung}} | ||
'''c)''' Berechne den Differentialquotient (Ableitung) von <math>f(x) = \tfrac{1}{4} x^2 + 1 </math>in einem beliebigen Punkt. Vergleiche Dein Ergebnis mit dem Ergebnis von Teil b). | '''c)''' '''''Berechne den Differentialquotient (Ableitung) von <math>f(x) = \tfrac{1}{4} x^2 + 1 </math>in einem beliebigen Punkt. Vergleiche Dein Ergebnis mit dem Ergebnis von Teil b).''''' | ||
{{Lösung versteckt|1 = Wir benutzen wie bereits in den Aufgaben davor die h-Formeln für den Differentialquotient. <math>f'(x) = \lim_{h \to \ 0} \frac{f(x +h) - f(x)}{h} = \lim_{h \to \ 0} \frac{\tfrac{1}{4}(x +h)^2 + 1 - \tfrac{1}{4}x^2-1}{h} = \lim_{h \to \ 0} \frac{\tfrac{1}{4}x^2 +\tfrac{1}{2} xh+\tfrac{1}{4} h^2- \tfrac{1}{4}x^2}{h} = \lim_{h \to \ 0} ( \tfrac{1}{2}x + \tfrac{1}{4}h) = \tfrac{1}{2}x </math> Das ist die gleiche Funktion wie beim graphischen Differenzieren.|2=Lösung|3=Lösung}}|Farbe = {{Farbe|grün|dunkel}} |3= Üben}} | {{Lösung versteckt|1 = Wir benutzen wie bereits in den Aufgaben davor die h-Formeln für den Differentialquotient. <math>f'(x) = \lim_{h \to \ 0} \frac{f(x +h) - f(x)}{h} = \lim_{h \to \ 0} \frac{\tfrac{1}{4}(x +h)^2 + 1 - \tfrac{1}{4}x^2-1}{h} = \lim_{h \to \ 0} \frac{\tfrac{1}{4}x^2 +\tfrac{1}{2} xh+\tfrac{1}{4} h^2- \tfrac{1}{4}x^2}{h} = \lim_{h \to \ 0} ( \tfrac{1}{2}x + \tfrac{1}{4}h) = \tfrac{1}{2}x </math> Das ist die gleiche Funktion wie beim graphischen Differenzieren.|2=Lösung|3=Lösung}}|Farbe = {{Farbe|grün|dunkel}} |3= Üben}} | ||
===So geht es weiter=== | ===So geht es weiter=== |
Version vom 18. April 2020, 19:41 Uhr
Allgemeine Hinweise zur Bearbeitung
Grundlegende Begriffe und Formeln
Aufgaben zum Wiederholen und Anwenden
Aufgaben zum Üben und Vertiefen