Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der durchschnittlichen zur lokalen Änderungsrate: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 198: | Zeile 198: | ||
{{Lösung versteckt|1 = Die Funktionsgleichung lautet: <math>m(x) = \tfrac{1}{2} x</math>. Denn <math>-1 = 0,5 \times (-2) oder 1,5 = 0,5\times 3</math> Das Verfahren, dass Du hier geübt hast nennt man graphisches Differenzieren und die Funktion ist die Ableitungsfunktion von f(x). Im Teil c) kannst Du diese Behauptung rechnerisch überprüfen|2= Lösung|3=Lösung}} | {{Lösung versteckt|1 = Die Funktionsgleichung lautet: <math>m(x) = \tfrac{1}{2} x</math>. Denn <math>-1 = 0,5 \times (-2) oder 1,5 = 0,5\times 3</math> Das Verfahren, dass Du hier geübt hast nennt man graphisches Differenzieren und die Funktion ist die Ableitungsfunktion von f(x). Im Teil c) kannst Du diese Behauptung rechnerisch überprüfen|2= Lösung|3=Lösung}} | ||
'''c)''' Berechne den Differentialquotient (Ableitung) von <math>f(x) = \tfrac{1}{ | '''c)''' Berechne den Differentialquotient (Ableitung) von <math>f(x) = \tfrac{1}{4} x^2 + 1 </math>in einem beliebigen Punkt. Vergleiche dein Ergebnis mit dem Ergebnis von Teil b) | ||
{{Lösung versteckt|1 = | {{Lösung versteckt|1 = Wir benutzen wie bereits in den Aufgaben davor die h-Formeln für den Differentialquotient. <math>f'(x) = \lim_{h \to \ 0} \frac{f(x +h) - f(x)}{h} = \lim_{h \to \ 0} \frac{\tfrac{1}{4}(x +h)^2 + 1 - \tfrac{1}{4}x^2-1}{h} = \lim_{h \to \ 0} \frac{\tfrac{1}{4}x^2 +\tfrac{1}{2} xh+\tfrac{1}{4} h^2- \tfrac{1}{4}x^2}{h} = \lim_{h \to \ 0} ( \tfrac{1}{2}x + \tfrac{1}{4}h) = \tfrac{1}{2}x </math> Das ist die gleiche Funktion wie beim graphischen Differenzieren.|2=Lösung|3=Lösung}} |3= Üben}} | ||
===So geht es weiter=== | ===So geht es weiter=== |
Version vom 15. April 2020, 20:53 Uhr
Allgemeine Hinweise zur Bearbeitung
Grundlegende Begriffe und Formeln
Aufgaben der Schwierigkeitsstufe I
Aufgaben der Schwierigkeitsstufe II