Benutzer:Fabian WWU-5: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 33: | Zeile 33: | ||
}} | }} | ||
{{Box |1=<span style="color: blue">Aufgabe 9: Wasser für die Katze</span>|2= Marc und Claudia freuen sich schon auf ihren Urlaub. Leider darf ihre Katze, Findus, jedoch nicht mit. Freundlicherweise will ihr Nachbar 1x täglich das Futter und Wasser nachfüllen. Damit Findus jedoch den ganzen Tag über Wasser finden kann, wollen die Beiden einen Wasserspender kaufen. Im Geschäft sehen sie zwei verschiedene Behälter, die unterschiedlich teuer sind. In den einen ( | {{Box |1=<span style="color: blue">Aufgabe 9: Wasser für die Katze</span>|2= Marc und Claudia freuen sich schon auf ihren Urlaub. Leider darf ihre Katze, Findus, jedoch nicht mit. Freundlicherweise will ihr Nachbar 1x täglich das Futter und Wasser nachfüllen. Damit Findus jedoch den ganzen Tag über Wasser finden kann, wollen die Beiden einen Wasserspender kaufen. Im Geschäft sehen sie zwei verschiedene Behälter, die unterschiedlich teuer sind. In den einen Wasserspender (Wasserspender A) passen <math>500ml</math> Wasser und er ist nach <math>15</math> Stunden leer. In den anderen Wasserspender(Wasserspender B) passen <math>300ml</math> rein und er ist erst nach <math>20</math> Stunden leer. Jetzt möchten die beiden herausfinden, welcher Wasserspender sich besser für ihre Katze eignet. | ||
'''a)''' Stelle für beide | '''a)''' Stelle für beide Wasserspender jeweils eine Funktionsvorschrift auf, mit der du zu jeder Zeit die Wassermenge berechnen kannst, die sich noch im Behälter befindet. Zeichne für beide Funktionen den Funktionsgraphen in dein Heft. (Hierbei sollte sowohl der <math>x</math>-Achsenabschnitt, sowie auch der <math>y</math>-Achsenabschnitt eingezeichnet sein. Wähle daher eine geeignete Skalierung.) | ||
Zeile 43: | Zeile 43: | ||
{{Lösung versteckt|1 = Mit zwei Punkten kannst du bereits eine lineare Funktion aufstellen. Suche diese beiden Punkte im Text für die jeweiligen Behälter. Falls du die Punkte findest, aber Schwierigkeiten bei dem Aufstellen der Gleichung hast, schaue dir Aufgabe 4 an.| 2=Tipp für das Aufstellen der Gleichungen |3=Tipp für das Aufstellen der Gleichungen}} | {{Lösung versteckt|1 = Mit zwei Punkten kannst du bereits eine lineare Funktion aufstellen. Suche diese beiden Punkte im Text für die jeweiligen Behälter. Falls du die Punkte findest, aber Schwierigkeiten bei dem Aufstellen der Gleichung hast, schaue dir Aufgabe 4 an.| 2=Tipp für das Aufstellen der Gleichungen |3=Tipp für das Aufstellen der Gleichungen}} | ||
{{Lösung versteckt|1 = Die Punkte für den | {{Lösung versteckt|1 = Die Punkte für den Wasserspender A sind <math> (0|500)</math> und <math>(15|0)</math>. Die Punkte für den Wasserspender B sind <math> (0|300)</math> und <math>(20|0)</math>. Setze für jeden Wasserspender die jeweiligen beiden Punkte in die allgemeine Form der linearen Funktion ein. |2=Zwischenergebnis für das Finden der Punkte|3=Zwischenergebnis für das Finden der Punkte}} | ||
{{Lösung versteckt|1= Da die Variable <math>x</math> die Stunden angibt, werden auch beim Zeichnen die Stunden auf der <math>x</math>-Achse eingetragen. Dementsprechend wird auf der <math>y</math>-Achse die Wasserhöhe im Behälter in Millilitern eingetragen. Da du auf der <math>x</math>-Achse bis <math> x=20 </math> gehen musst, könntest du hier eine Skalierung wählen bei der du <math> 1 cm </math> für zwei Stunden wählst. Auf der <math>y</math>-Achse musst du bis <math>y=500</math> gehen. Hier könntest du <math> 1 cm </math> für <math> 50 ml </math> wählen. Natürlich sind auch andere Skalierungen möglich, du solltest dir nur überlegen, dass das Koordinatensystem nicht zu groß wird.|2= Tipp fürs Zeichnen |3= Tipp fürs Zeichnen}} | {{Lösung versteckt|1= Da die Variable <math>x</math> die Stunden angibt, werden auch beim Zeichnen die Stunden auf der <math>x</math>-Achse eingetragen. Dementsprechend wird auf der <math>y</math>-Achse die Wasserhöhe im Behälter in Millilitern eingetragen. Da du auf der <math>x</math>-Achse bis <math> x=20 </math> gehen musst, könntest du hier eine Skalierung wählen bei der du <math> 1 cm </math> für zwei Stunden wählst. Auf der <math>y</math>-Achse musst du bis <math>y=500</math> gehen. Hier könntest du <math> 1 cm </math> für <math> 50 ml </math> wählen. Natürlich sind auch andere Skalierungen möglich, du solltest dir nur überlegen, dass das Koordinatensystem nicht zu groß wird.|2= Tipp fürs Zeichnen |3= Tipp fürs Zeichnen}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
{{Lösung versteckt|1 = ''' | {{Lösung versteckt|1 = '''Wasserspender A: ''' | ||
Wir haben die Punkte <math> (0|500)</math> und <math>(15|0)</math> und die allgemeine Funktionsgleichung <math> f(x) = m\cdot x+b</math>. In diese setzten wir die beiden Punkte jeweils ein: | Wir haben die Punkte <math> (0|500)</math> und <math>(15|0)</math> und die allgemeine Funktionsgleichung <math> f(x) = m\cdot x+b</math>. In diese setzten wir die beiden Punkte jeweils ein: | ||
Zeile 56: | Zeile 56: | ||
'''<math>(15|0)</math>:''' <math>f(15) = m\cdot 15+b=0</math>. Da wir schon wissen, dass <math>b=500</math> ist, folgt hieraus, dass <math>m=-\frac{100}{3}</math> ist. | '''<math>(15|0)</math>:''' <math>f(15) = m\cdot 15+b=0</math>. Da wir schon wissen, dass <math>b=500</math> ist, folgt hieraus, dass <math>m=-\frac{100}{3}</math> ist. | ||
Setzt man nun <math>m</math> und <math>b</math> in die Funktionsgleichung ein, erhalten wir <math> f(x) = -\frac{100}{3} \cdot x + 500</math>|2=Lösung für | Setzt man nun <math>m</math> und <math>b</math> in die Funktionsgleichung ein, erhalten wir <math> f(x) = -\frac{100}{3} \cdot x + 500</math>|2=Lösung für Wasserspender A|3=Lösung für Wasserspender A}} | ||
{{Lösung versteckt|1 = ''' | {{Lösung versteckt|1 = '''Wasserspender B: ''' | ||
Wir haben die Punkte <math> (0|300)</math> und <math>(20|0)</math> und die allgemeine Funktionsgleichung <math> g(x) = n\cdot x+a</math>. In diese setzten wir die beiden Punkte jeweils ein: | Wir haben die Punkte <math> (0|300)</math> und <math>(20|0)</math> und die allgemeine Funktionsgleichung <math> g(x) = n\cdot x+a</math>. In diese setzten wir die beiden Punkte jeweils ein: | ||
Zeile 66: | Zeile 66: | ||
'''<math>(20|0)</math>:''' <math>g(20) = n\cdot 20+a=0</math>. Da wir schon wissen, dass <math>a=300</math> ist, folgt hieraus, dass <math>n=-15</math> ist. | '''<math>(20|0)</math>:''' <math>g(20) = n\cdot 20+a=0</math>. Da wir schon wissen, dass <math>a=300</math> ist, folgt hieraus, dass <math>n=-15</math> ist. | ||
Setzt man nun <math>n</math> und <math>a</math> in die Funktionsgleichung ein, erhalten wir <math> g(x) = -15 \cdot x + 300</math>|2=Lösung für | Setzt man nun <math>n</math> und <math>a</math> in die Funktionsgleichung ein, erhalten wir <math> g(x) = -15 \cdot x + 300</math>|2=Lösung für WasserspenderB|3=Lösung für WasserspenderB}} | ||
{{Lösung versteckt|1 =<ggb_applet id="y7ewcapm" width="700" height="500" border="888888" />|2= Lösung für die Funktionsgraphen|3=Lösung für die Funktionsgraphen}} |2= Lösung anzeigen |3= Lösungen verstecken}} | {{Lösung versteckt|1 =<ggb_applet id="y7ewcapm" width="700" height="500" border="888888" />|2= Lösung für die Funktionsgraphen|3=Lösung für die Funktionsgraphen}} |2= Lösung anzeigen |3= Lösungen verstecken}} |
Version vom 29. Oktober 2019, 08:26 Uhr
Ich benutze im Rahmen des Seminars DiWerS das Tool Zum Projekte.
Lineare Funktionen erkennen