Geometrie im Dreieck/Triangle-Architects: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
(Blaue Haken) |
||
(5 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 16: | Zeile 16: | ||
| 3 = Kurzinfo | | 3 = Kurzinfo | ||
}} | }} | ||
==1. Einstieg== | ==1. Einstieg== | ||
[[Datei:Achimalbertaa.png|thumb|Achim und Alberta sind verwirrt|284x284px]][[Datei:Schloss.png|thumb|Schloss Hülshoff mit der Bühnenkonstruktion von Achim und Alberta|300px|links]] | [[Datei:Achimalbertaa.png|thumb|Achim und Alberta sind verwirrt|284x284px]][[Datei:Schloss.png|thumb|Schloss Hülshoff mit der Bühnenkonstruktion von Achim und Alberta|300px|links]] | ||
Zwischen Münster und Havixbeck steht die Burg Hülshoff. Vor etwa 200 Jahren wurde dort Annette Droste-Hülshoff geboren. Sie schrieb unter anderem das Gedicht "der Knabe im Moor". Zur Erinnerung an sie soll in den Burghof eine Bühne gebaut werden. Damit wurde das Architektenduo Achim-Alberta beauftragt. Das Duo hat bereits eine Idee und eine Skizze angefertigt ( | Zwischen Münster und Havixbeck steht die Burg Hülshoff. Vor etwa 200 Jahren wurde dort Annette Droste-Hülshoff geboren. Sie schrieb unter anderem das Gedicht "der Knabe im Moor". Zur Erinnerung an sie soll in den Burghof eine Bühne gebaut werden. Damit wurde das Architektenduo Achim-Alberta beauftragt. Das Duo hat bereits eine Idee und eine Skizze angefertigt (siehe Bilder). Heute wollen sie zum Schloss fahren und messen, wie groß die Bühne wird. Sie überlegen, welche Längen und Winkel sie messen müssen, um die Bühne genau zu konstruieren. [[Datei:Bühne1.png|thumb|Abbildung 3: Bühnenkonstruktion von Achim und Alberta |links]] | ||
Kannst du ihnen helfen? Welche Größen müssen Sie messen, um die Bühne zu | Kannst du ihnen helfen? Welche Größen müssen Sie messen, um die Bühne zu konstruieren? Beschäftige dich dabei zunächst nur mit der dreieckigen Grundfläche (Siehe Abbildung 3). Notiere dir die Größen, die sie deiner Meinung nach messen müssen, auf einem Schmierpapier. Gibt es verschiedene Kombinationen, die eine '''Konstruktion''' möglich machen? Überprüfe dich später selber. | ||
{{Lösung versteckt|1=Messbare | {{Lösung versteckt|1=Messbare Größen sind die Länge der Hausseite a, der Hausseite b und der Hausseite c und die Größe der Winkel α, β und γ |2= Hilfe|3= Hilfe verbergen}} | ||
Zeile 63: | Zeile 53: | ||
{{Box|Aufgabe 2.1: Konstruktionsbeschreibung anfertigen|{{Lösung versteckt | | {{Box|Aufgabe 2.1: Konstruktionsbeschreibung anfertigen|{{Lösung versteckt | | ||
Du sollst ein Dreieck mit b <math> = </math> 2cm, α <math> = </math> 50°, c <math> = </math> 5cm konstruieren. Sortiere welche Schritte der Konstruktionsbeschreibung zu welchen Bildern gehören. | Du sollst ein Dreieck mit b <math> = </math> 2cm, α <math> = </math> 50°, c <math> = </math> 5cm konstruieren. Sortiere welche Schritte der Konstruktionsbeschreibung zu welchen Bildern gehören. Wenn du meinst, dass du die richtige Lösung gefunden hast, tippe auf den blauen Haken unten rechts. | ||
{{LearningApp|app=p6jdottyc24|width=100%|height=400px}} | {{LearningApp|app=p6jdottyc24|width=100%|height=400px}} | ||
| Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode | | Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode | ||
Zeile 70: | Zeile 60: | ||
{{Box|Aufgabe 2.2: Konstruktionsbeschreibung sortieren|{{Lösung versteckt | | {{Box|Aufgabe 2.2: Konstruktionsbeschreibung sortieren|{{Lösung versteckt | | ||
Du sollst wie zuvor ein Dreieck mit b <math> = </math> 2cm, α <math> = </math> 50°, c <math> = </math> 5cm konstruieren. Sortiere die Schritte in die richtige Reihenfolge. Benutze Aufgabe 1 als Hilfe. | Du sollst wie zuvor ein Dreieck mit b <math> = </math> 2cm, α <math> = </math> 50°, c <math> = </math> 5cm konstruieren. Sortiere die Schritte in die richtige Reihenfolge. Benutze Aufgabe 1 als Hilfe. Wenn du meinst, dass du die richtige Lösung gefunden hast, tippe auf den blauen Haken unten rechts. | ||
{{LearningApp|app=p2iyc69xk24|width=100%|height=400px}} | {{LearningApp|app=p2iyc69xk24|width=100%|height=400px}} | ||
| Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode | | Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode | ||
Zeile 116: | Zeile 106: | ||
{{Box|Aufgabe 3.1: Konstruktionsbeschreibung anfertigen/ Bilder ordnen|{{Lösung versteckt | | {{Box|Aufgabe 3.1: Konstruktionsbeschreibung anfertigen/ Bilder ordnen|{{Lösung versteckt | | ||
Du sollst ein Dreieck mit c <math> = </math> 5cm, α <math> = </math> 55°, β <math> = </math> 30° konstruieren. Ordne die Schritte der Konstruktionsbeschreibung den Bildern zu | Du sollst ein Dreieck mit c <math> = </math> 5cm, α <math> = </math> 55°, β <math> = </math> 30° konstruieren. Ordne die Schritte der Konstruktionsbeschreibung den Bildern zu. Wenn du meinst, dass du die richtige Lösung gefunden hast, tippe auf den blauen Haken unten rechts. | ||
{{LearningApp|app=proeom3x324|width=100%|height=400px}} | {{LearningApp|app=proeom3x324|width=100%|height=400px}} | ||
| Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode | | Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode | ||
Zeile 124: | Zeile 114: | ||
{{Box|Aufgabe 3.2: Konstruktionsbeschreibung anfertigen/ Lückentext|{{Lösung versteckt | | {{Box|Aufgabe 3.2: Konstruktionsbeschreibung anfertigen/ Lückentext|{{Lösung versteckt | | ||
Du sollst ein Dreieck mit c <math> = </math> 4cm, α <math> = </math> 50°, β <math> = </math> 40° konstruieren. Fülle die Lücken im Text in der richtigen Reihenfolge aus. | Du sollst ein Dreieck mit c <math> = </math> 4cm, α <math> = </math> 50°, β <math> = </math> 40° konstruieren. Fülle die Lücken im Text in der richtigen Reihenfolge aus. Wenn du meinst, dass du die richtige Lösung gefunden hast, tippe auf den blauen Haken unten rechts. | ||
{{LearningApp|app=p23jg55dn24|width=100%|height=500px}} | {{LearningApp|app=p23jg55dn24|width=100%|height=500px}} | ||
{{Lösung versteckt|1=Beschränke dich bei der Auswahl der Texte für die Lücken auf folgende Optionen: | {{Lösung versteckt|1=Beschränke dich bei der Auswahl der Texte für die Lücken auf folgende Optionen: | ||
Zeile 209: | Zeile 199: | ||
{{Box|Aufgabe 5.2: Entscheide, was richtig ist|{{Lösung versteckt | | {{Box|Aufgabe 5.2: Entscheide, was richtig ist|{{Lösung versteckt | | ||
Kreuze an, welche Bedingungen in einem Dreieck vorliegen müssen, damit es konstruierbar ist. Wähle alle richtigen Antworten aus! | Kreuze an, welche Bedingungen in einem Dreieck vorliegen müssen, damit es konstruierbar ist. Wähle alle richtigen Antworten aus! Wenn du meinst, dass du die richtige Lösung gefunden hast, tippe auf den blauen Haken unten rechts. | ||
{{LearningApp|app=pkzd58un324|width=100%|height=400px}} | {{LearningApp|app=pkzd58un324|width=100%|height=400px}} | ||
| Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode | | Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode | ||
Zeile 216: | Zeile 206: | ||
{{Box|Aufgabe 5.3: Stelle einen Merksatz auf|{{Lösung versteckt | | {{Box|Aufgabe 5.3: Stelle einen Merksatz auf|{{Lösung versteckt | | ||
Fülle den Lückentext aus, indem du aus den Vorschlägen das richtige Wort in die jeweilige Lücke setzt. Schreibe dann den ausgefüllten Text auf dein Arbeitsblatt unter 4.3. | Fülle den Lückentext aus, indem du aus den Vorschlägen das richtige Wort in die jeweilige Lücke setzt. Wenn du meinst, dass du die richtige Lösung gefunden hast, tippe auf den blauen Haken unten rechts. Schreibe dann den ausgefüllten Text auf dein Arbeitsblatt unter 4.3. | ||
{{LearningApp|app=ph0i4nnut24|width=100%|height=350px}} | {{LearningApp|app=ph0i4nnut24|width=100%|height=350px}} | ||
| Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode | | Aufgabe anzeigen | Aufgabe verbergen}}|Arbeitsmethode |
Aktuelle Version vom 21. November 2024, 11:41 Uhr
Info
1. Einstieg
Zwischen Münster und Havixbeck steht die Burg Hülshoff. Vor etwa 200 Jahren wurde dort Annette Droste-Hülshoff geboren. Sie schrieb unter anderem das Gedicht "der Knabe im Moor". Zur Erinnerung an sie soll in den Burghof eine Bühne gebaut werden. Damit wurde das Architektenduo Achim-Alberta beauftragt. Das Duo hat bereits eine Idee und eine Skizze angefertigt (siehe Bilder). Heute wollen sie zum Schloss fahren und messen, wie groß die Bühne wird. Sie überlegen, welche Längen und Winkel sie messen müssen, um die Bühne genau zu konstruieren.
Kannst du ihnen helfen? Welche Größen müssen Sie messen, um die Bühne zu konstruieren? Beschäftige dich dabei zunächst nur mit der dreieckigen Grundfläche (Siehe Abbildung 3). Notiere dir die Größen, die sie deiner Meinung nach messen müssen, auf einem Schmierpapier. Gibt es verschiedene Kombinationen, die eine Konstruktion möglich machen? Überprüfe dich später selber.
2. Ein Dreieck konstruieren mit Seite Winkel Seite (SWS)
In diesem Kapitel lernst du, wie du ein Dreieck konstruieren kannst, wenn du die Länge von zwei Seiten und den dazwischen liegenden Winkel kennst. In der Box steht eine Anleitung, die dir das Konstruieren von Dreiecken erleichtert. Nutze die Anleitung für die folgenden Aufgaben.
Konstruieren bedeutet, dass du eine geometrische Figur Schritt für Schritt erstellst. Dabei musst du sehr genau arbeiten.
Planfigur: Eine Planfigur ist eine kleine Zeichnung, in der noch nicht alle Längen, Winkel und Größen richtig eingetragen sind. Du markierst dir die gegebene Größen, Winkel, Seiten bunt und hast dadurch einen besseren Überblick.
Konstruktionsbeschreibung: Du schreibst in kleinen Schritten auf, wie du ein Dreieck gezeichnet hast.
3. Ein Dreieck konstruieren mit Winkel Seite Winkel (WSW)
In diesem Kapitel lernst du, wie du ein Dreieck konstruieren kannst, wenn du zwei Winkel gegeben hast sowie die Seite, die zwischen diesen beiden Winkeln liegt.
4. Training macht den Meister
5. Triangle-Experts: Kann man mit drei Seiten immer ein Dreieck konstruieren?
In diesem Kapitel lernst du, wann man ein Dreieck konstruieren kann, wenn alle drei Seiten bekannt sind.
Super, du bist fertig! Gehe zurück zur Startseite Geometrie im Dreieck und bearbeite ein weiteres Kapitel!