Benutzer:Jonte Uni MS 14/Entwurf: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 35: Zeile 35:


==Aufgabe 1==
==Aufgabe 1==
{{Box | Aufgabe 1:| Experimentiere mit den Besonderen Punkten des Dreiecks herum und notiere dir die besonderen Eigenschaften auf dem Arbeitsblatt.| Arbeitsmethode | Farbe={{Farbe|orange}}  
{{Box | Aufgabe 1:| Experimentiere mit den Besonderen Punkten des Dreiecks herum und notiere dir die besonderen Eigenschaften auf dem Arbeitsblatt.| Arbeitsmethode | Farbe={{Farbe|orange}} }}
<ggb_applet id="ek99gmjh" width="700" height="450" />
<ggb_applet id="ek99gmjh" width="700" height="450" />
{{Lösung versteckt|
{{Lösung versteckt|
Zeile 49: Zeile 49:
|Eigenschaften anzeigen|Eigenschaften verbergen}}
|Eigenschaften anzeigen|Eigenschaften verbergen}}
</div>
</div>
}}
 




==Aufgabe 2==
==Aufgabe 2==
{{Box | Aufgabe 1: |  | Arbeitsmethode | Farbe={{Farbe|orange}}  
{{Box | Aufgabe 1: |  | Arbeitsmethode | Farbe={{Farbe|orange}} }}
<div class="lueckentext-quiz">
<div class="lueckentext-quiz">
a) Ordne die Punkte den Geraden zu, deren Schnittpunkt sie bilden.
a) Ordne die Punkte den Geraden zu, deren Schnittpunkt sie bilden.
Zeile 75: Zeile 75:
U'''m'''kreis und '''M'''ittelsenkrechte: In beidem kommt "'''m'''" vor.
U'''m'''kreis und '''M'''ittelsenkrechte: In beidem kommt "'''m'''" vor.
|mögliche Eselsbrücke anzeigen|Eselsbrücke verbergen}}
|mögliche Eselsbrücke anzeigen|Eselsbrücke verbergen}}
}}




Zeile 87: Zeile 86:


==Aufgabe 3==
==Aufgabe 3==
{{Box | Aufgabe 3:  | Benenne die Punkte M<sub>1</sub> M<sub>2</sub> und M<sub>3</sub> der dynamischen Grafik. Du kannst die Eckpunkte des Dreiecks bewegen. | Arbeitsmethode
{{Box | Aufgabe 3:  | Benenne die Punkte M<sub>1</sub> M<sub>2</sub> und M<sub>3</sub> der dynamischen Grafik. Du kannst die Eckpunkte des Dreiecks bewegen. | Arbeitsmethode }}
<ggb_applet id="srjcpuge" width="400" height="450" />
<ggb_applet id="srjcpuge" width="400" height="450" />
<div class="lueckentext-quiz">
<div class="lueckentext-quiz">
Zeile 97: Zeile 96:
{{Lösung versteckt|Du kannst den Umkreismittelpunkt herausfinden in dem du einen stumpfen Winkel im Dreieck erzeugst. Dann liegt der Umkreismittelpunkt außerhalb des Dreiecks. Wenn du nicht mehr weißt was ein stumpfer Winkel ist schaue [https://projekte.zum.de/wiki/Digitale_Werkzeuge_in_der_Schule/Rund_ums_Dreieck hier] .|Tipp 1 anzeigen|Tipp 1 verbergen}}
{{Lösung versteckt|Du kannst den Umkreismittelpunkt herausfinden in dem du einen stumpfen Winkel im Dreieck erzeugst. Dann liegt der Umkreismittelpunkt außerhalb des Dreiecks. Wenn du nicht mehr weißt was ein stumpfer Winkel ist schaue [https://projekte.zum.de/wiki/Digitale_Werkzeuge_in_der_Schule/Rund_ums_Dreieck hier] .|Tipp 1 anzeigen|Tipp 1 verbergen}}
{{Lösung versteckt|Überlege dir, wo beispielsweise eine Winkelhalbierende entlangläuft und verschieben dann einen Eckpunkt. Der Inkreismittelpunkt ist der Schnittpunkt der Winkelhalbierenden.|Tipp 2 anzeigen|Tipp 2 verbergen}}
{{Lösung versteckt|Überlege dir, wo beispielsweise eine Winkelhalbierende entlangläuft und verschieben dann einen Eckpunkt. Der Inkreismittelpunkt ist der Schnittpunkt der Winkelhalbierenden.|Tipp 2 anzeigen|Tipp 2 verbergen}}
}}
 


==Schnappe die Diebe==
==Schnappe die Diebe==
Zeile 108: Zeile 107:
{{Lösung versteckt|Der Umkreismittelpunkt ist von jedem Eckpunkt eines Dreiecks gleich weit entfernt.|2=Tipp 2|3=Hilfe verbergen}}|Arbeitsmethode| Farbe = {{Farbe|orange}}
{{Lösung versteckt|Der Umkreismittelpunkt ist von jedem Eckpunkt eines Dreiecks gleich weit entfernt.|2=Tipp 2|3=Hilfe verbergen}}|Arbeitsmethode| Farbe = {{Farbe|orange}}
}}
}}
Zur Übersicht: [[Geometrie im Dreieck]]

Aktuelle Version vom 12. November 2024, 12:15 Uhr

Kapitel-Informationskästchen

Info

In diesem Lernpfadkapitel werden besondere Punkte eines Dreiecks behandelt.

Bei diesen Punkten handelt es sich um den Umkreismittelpunkt, den Inkreismittelpunkt und den Schwerpunkt. Um dieses Kapitel bearbeiten zu können, müssen die Winkelhalbierende, die Seitenhalbierende und die Mittelsenkrechte eines Dreiecks konstruiert werden können. Wenn du das noch nicht beherrschst, schaue dir dieses Kapitel an (Link).

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Viel Erfolg!

Einstieg

Karte mit den möglichen Einbrüchen.

Ganz Münster ist in Angst versetzt. Einbrecher sind in der Stadt unterwegs. Doch Kommissar Biehl hat eine heiße Spur: er weiß wo der nächste Einbruch stattfinden wird. Leider kommen dafür zwei Juweliere und eine Bank infrage.

Wo soll sich Kommissar Biehl auf die Lauer legen?

Kommissar Biehl muss natürlich schnellstmöglich vor Ort sein, um die Einbrecher auf frischer Tat zu ertappen. Wo soll er sich heute Nacht in der Stadt aufhalten, damit er schnell an jedem möglichen Einbruchsort sein kann?







Aufgabe 1

Aufgabe 1:
Experimentiere mit den Besonderen Punkten des Dreiecks herum und notiere dir die besonderen Eigenschaften auf dem Arbeitsblatt.
GeoGebra

Der Umkreis berührt alle Eckpunkte eines Dreiecks. Der Umkreismittelpunkt ist der Schnittpunkt der drei Mittelsenkrechten des Dreiecks. Zur Konstruktion des Umkreises genügt es, zwei Mittelsenkrechten zu zeichnen.

GeoGebra

Der Inkreis berührt Seiten eines Dreiecks genau einmal. Der Inkreismittelpunkt ist der Schnittpunkt der drei Winkelhalbierenden des Dreiecks. Zur Konstruktion des Inkreises genügt es, zwei Winkelhalbierende zu zeichnen.

GeoGebra

Der Schwerpunkt ist der Schnittpunkt der drei Seitenhalbierenden des Dreiecks. Diese teilt er immer im Verhältnis 2:1. Zur Konstruktion des Schwerpunkts genügt es, zwei Seitenhalbierende zu zeichnen.


Aufgabe 2

Aufgabe 1:

a) Ordne die Punkte den Geraden zu, deren Schnittpunkt sie bilden.

Mittelsenkrechte - Umkreismittelpunkt

Winkelhalbierende - Inkreismittelpunkt

Seitenhalbierende - Schwerpunkt

b) Wie kannst du dir gut merken, welcher Punkt zu welchen Geraden gehört? Notiere hierzu eine Eselsbrücke oder eine andere Merktechnik zu den drei Punkten.

Eine einfache Eselsbrücke könnte so lauten:

Schwerpunkt und Seitenhalbierende: Beides beginnt mit "S".

Inkreis und Winkelhalbierende: In beidem kommt "ink" vor.

Umkreis und Mittelsenkrechte: In beidem kommt "m" vor.



Wiederholung

Eigenschaften des Umkreismittelpunkt

Der Umkreismittelpunkt kann als einziger Punkt auch außerhalb des Dreiecks liegen. Nämlich genau dann, wenn das Dreieck einen stumpfen Winkel hat. Bei einem rechtwinkligen Dreieck liegt der Umkreismittelpunkt auf der gegebüberliegenden Seite (Hypotenuse). Im Kasten kannst du die Eckpunkte des Dreiecks verschieben und den Umkreismittelpunkt beobachten. Wenn du nicht mehr weißt was ein stumpfer Winkel ist schaue hier.

GeoGebra

Aufgabe 3

Aufgabe 3:
Benenne die Punkte M1 M2 und M3 der dynamischen Grafik. Du kannst die Eckpunkte des Dreiecks bewegen.
GeoGebra

Deine Lösung:

M1 - Umkreismittelpunkt, M2 - Schwerpunkt, M3 - Inkreismittelpunkt

Du kannst den Umkreismittelpunkt herausfinden in dem du einen stumpfen Winkel im Dreieck erzeugst. Dann liegt der Umkreismittelpunkt außerhalb des Dreiecks. Wenn du nicht mehr weißt was ein stumpfer Winkel ist schaue hier .
Überlege dir, wo beispielsweise eine Winkelhalbierende entlangläuft und verschieben dann einen Eckpunkt. Der Inkreismittelpunkt ist der Schnittpunkt der Winkelhalbierenden.


Schnappe die Diebe

Aufgabe 4: Entfernungsproblem

Finde den Ort an dem Kommissar Biehl warten soll, damit er gleich schnell bei jedem möglichen Einbruchsort ist. Du kannst im Fenster mit Geogebra Konstruktionen durchführen.

GeoGebra
Kommissar Biehl sollte von jedem Einbruchsort gleichweit entfernt sein.


Der Umkreismittelpunkt ist von jedem Eckpunkt eines Dreiecks gleich weit entfernt.

Zur Übersicht: Geometrie im Dreieck