Digitale Werkzeuge in der Schule/Kleine Lernstandserhebung zur Doppeljahrgangsstufe 5/6/Geometrische Figuren und Winkel/Koordinatensysteme: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(94 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Box:Aufgabe 1: Einführung in Koordinatensysteme
 
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (*) Aufgabe 1: Einführung in das Koordinatensystem|LearningApp|width=100%|height=500px|app=18287921}}|Arbeitsmethode
== Koordinatensysteme ==
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (*) Aufgabe 1: Einführung in das Koordinatensystem |
Beschrifte das Koordinatensystem mit den richtigen Begriffen!
[[Datei:Koordinatensystem beschriften.jpg|right]]
 
<quiz display="simple">
{'''Kästchen 1 zeigt'''}
- die X-Achse
- die Y-Achse
+ den Ursprung (Nullpunkt)
- die X-Koordinate
- die Y-Koordinate
- einen Punkt
 
{'''Kästchen 2 zeigt'''}
- die X-Achse
+ die Y-Achse
- den Ursprung (Nullpunkt)
- die X-Koordinate
- die Y-Koordinate
- einen Punkt
 
{'''Kästchen 3 zeigt'''}
- die X-Achse
- die Y-Achse
- den Ursprung (Nullpunkt)
- die X-Koordinate
- die Y-Koordinate
+ einen Punkt
 
{'''Kästchen 4 zeigt'''}
- die X-Achse
- die Y-Achse
- den Ursprung (Nullpunkt)
+ die X-Koordinate
- die Y-Koordinate
- einen Punkt
 
 
{'''Kästchen 5 zeigt'''}  
- die X-Achse
- die Y-Achse
- den Ursprung (Nullpunkt)
- die X-Koordinate
+ die Y-Koordinate
- einen Punkt
 
{'''Kästchen 6 zeigt'''}  
+ die X-Achse
- die Y-Achse
- den Ursprung (Nullpunkt)
- die X-Koordinate
- die Y-Koordinate
- einen Punkt
</quiz>
|Aufgabe
| Farbe = {{Farbe|orange}}
| Farbe = {{Farbe|orange}}
}}
}}


{{Box|[[Datei:Icon-Pinnnadel.svg|links|rahmenlos|30x30px]] Merksatz: Beschriftung von Koordinatensystemen|In einem Koordinatensystem lässt sich die Lage eines Punktes genau angeben. Bei jedem Punkt '''P (x<math>\mid</math>y)''' wird zuerst die '''x-Koordinate''' und dann die '''y-Koordinate''' angegeben.
Wichtig ist dabei der "Null-Punkt" (der '''Ursprung''') des Koordinatensystems. Damit ist derjenige Punkt gemeint, an dem sich die beiden Achsen schneiden, also der Punkt (0<math>\mid</math>0).
Die vier Bereiche in einem Koordinatensystem werden '''Quadranten''' genannt. Der erste Quadrant ist der Bereich oben rechts des Koordinatensystems und die anderen Bereiche werden gegen den Uhrzeigersinn durchnummeriert. Häufig wird nur der erste Quadrant gezeichnet.|Merksatz| Farbe = {{Farbe|grün}}
}}
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (*) Aufgabe 2: Punkte im Koordinatensystem |
Bewege die Punkte an die angegebenen Koordinaten!
<ggb_applet id="evvvrpxr" width="1000" height="685"/>
{{Lösung versteckt|1='''So trägst du Punkte in ein Koordinatensystem ein''':[[Datei:Punkte im Koordinatensystem eintragen-2.jpg|zentriert]] |2=Tipp |3=Tipp verbergen}}
|Aufgabe| Farbe = {{Farbe|orange}}
}}
{{Box|[[Datei:Icon-pencil-9576.svg|links|rahmenlos|30x30px]] (**) Aufgabe 3: Koordinaten von Punkten |
Was sind die Koordinaten der angegebenen Punkte?
<ggb_applet id="wcxxfe4v" width="1000" height="731"/>|Aufgabe| Farbe = #CD2990
}}


Klicke auf die Markierungen und beschrifte das Koordinatensystem mit den richtigen Begriffen!
[[Digitale Werkzeuge in der Schule/Kleine Lernstandserhebung zur Doppeljahrgangsstufe 5/6/Geometrische Figuren und Winkel/Geraden, Strecken, Parallelen und Senkrechten|Nächstes Kapitel]]


{{LearningApp|width=100%|height=500px|app=18287921}}| 3=Arbeitsmethode | Farbe={{Farbe|orange}} }}
{{Fortsetzung|vorher=zurück zur Kapitelauswahl|vorherlink=Digitale_Werkzeuge_in_der_Schule/Kleine_Lernstandserhebung_zur_Doppeljahrgangsstufe_5/6}}

Aktuelle Version vom 9. Juni 2024, 21:00 Uhr

Koordinatensysteme

Icon-pencil-9576.svg
(*) Aufgabe 1: Einführung in das Koordinatensystem

Beschrifte das Koordinatensystem mit den richtigen Begriffen!

Koordinatensystem beschriften.jpg

1 Kästchen 1 zeigt

die X-Achse
die Y-Achse
den Ursprung (Nullpunkt)
die X-Koordinate
die Y-Koordinate
einen Punkt

2 Kästchen 2 zeigt

die X-Achse
die Y-Achse
den Ursprung (Nullpunkt)
die X-Koordinate
die Y-Koordinate
einen Punkt

3 Kästchen 3 zeigt

die X-Achse
die Y-Achse
den Ursprung (Nullpunkt)
die X-Koordinate
die Y-Koordinate
einen Punkt

4 Kästchen 4 zeigt

die X-Achse
die Y-Achse
den Ursprung (Nullpunkt)
die X-Koordinate
die Y-Koordinate
einen Punkt

5 Kästchen 5 zeigt

die X-Achse
die Y-Achse
den Ursprung (Nullpunkt)
die X-Koordinate
die Y-Koordinate
einen Punkt

6 Kästchen 6 zeigt

die X-Achse
die Y-Achse
den Ursprung (Nullpunkt)
die X-Koordinate
die Y-Koordinate
einen Punkt


Icon-Pinnnadel.svg
Merksatz: Beschriftung von Koordinatensystemen

In einem Koordinatensystem lässt sich die Lage eines Punktes genau angeben. Bei jedem Punkt P (xy) wird zuerst die x-Koordinate und dann die y-Koordinate angegeben. Wichtig ist dabei der "Null-Punkt" (der Ursprung) des Koordinatensystems. Damit ist derjenige Punkt gemeint, an dem sich die beiden Achsen schneiden, also der Punkt (00).

Die vier Bereiche in einem Koordinatensystem werden Quadranten genannt. Der erste Quadrant ist der Bereich oben rechts des Koordinatensystems und die anderen Bereiche werden gegen den Uhrzeigersinn durchnummeriert. Häufig wird nur der erste Quadrant gezeichnet.


Icon-pencil-9576.svg
(*) Aufgabe 2: Punkte im Koordinatensystem

Bewege die Punkte an die angegebenen Koordinaten!

GeoGebra
So trägst du Punkte in ein Koordinatensystem ein:
Punkte im Koordinatensystem eintragen-2.jpg


Icon-pencil-9576.svg
(**) Aufgabe 3: Koordinaten von Punkten

Was sind die Koordinaten der angegebenen Punkte?

GeoGebra

Nächstes Kapitel